Adrian Rezus

Mevhorst 21-01
. 6537 KJ Nijmegen
The Netherlands.

CLASSICAL PROQOOQOTFS

(Lambda Calculus Methods in Elementary Proof Theory)

Nijmegen, August 5, 1990

=
<

b

[nm;-)\\“nv

1 Introduction

1. Introduction. During the early thirties, Haskell B. Curry has

noticed a certaln correspondence subsisting between the behavior
of stratified systems of combinators and axiomatlic presentations
of the concept of fFformal deduction for the posifive implication

of Hilbert.

The latter is, in fact, a tiny fragment of classzical propositional
logic and coincides with the pure implicaticnal part of Heyting's
{19301 first-order logic HQ.

Curry’'s observation is the core of what has become known since as
~the propositions—-as-types isomorphisn.

The principle behind the iscomorphism has been re-discovered
by nearly everybody else concerned with typed l-calculi,
systems of typed/stratified combinators and/or the proof-
theory of Heyting's logic. A few significant names, in
historical order, are: F. B. Fitch (19345, C. A. HMeredith
3 (+ 1951>, H. L&uchli (1956), W. A, Howard (1968>, N. G. de
' Bruijn (1969-70>, D. 8. Scott (1¢69-70>, P. Martin-Lof
(1970-71>, J.-Y. Girard 1970-71>, etc.

Roughly speaking, the isomorphism associates, in a specific formal
s@tting and for a preferred semantics of the logical operations:

propositions/formulas ++ Ltypes/iype-expressions,

proofs/proof-ternms += constructions/A—terms (combinators

and can be also understood as a way of characterizing proofs
rigorously, from an goperational viewpoint.

More recently, such a characterization has become a basic tool in
work on computer implementations of proof-systems.

This technique has been known to work for (and has been applied to)
so-called "constructive” cases, exclusively, as, e. g.,

= the first-order Heyting logic HQ (H. L&uchli, V. A. Howard?,

= the Heyting propositional logic with propogitional qguasntifisrs
(J.-Y. Girard) and

+ a formalized variant of Bishop’'s "constructive mathematics”,
better known as Constructive Type Theory (P. Hartin-LSf).

As a matter of fact, the propositions-as-types §sonorphisn has
been, so far, just the name for a formal variant of the so-called
BHK-inmterpretation (Brouwer-Heyting-Kolmogorov) of the Heyting
proof-operations (the proof-operations involved in HQ, say; cf.

e. g., [Troelstra & van Dalen 19881).

11 £11

L

P

1 Intraoduction

Less known is a slightly more general point of view, advocated by
Carew A. Meredith (a former student of Jan Lukasiewicz in Dublin;

see [Meredith 19771), around 1951-56. Unfortunately, it has never
been formulated explicitly in print, except for a few practical
hints concerning a general combinatory proof-notatiosn for purely
implicational systems of logic (see, e. g., [Meredith & Prior 19631,
[Rezus 19821, [Kalman 19831, [{Meredith & Hindley 19901 or [Bunder &
Meyer 199 1, for details).

Meredith's standpoint allows to accommodate, in a stratified/typed
combinatory setting, arbitrary concepts of a formal proof (i. e.,
not necessarily "intuitionistic”). Also, for well-behaved cases,
the combinatory presentations admit of an alternative, equivalent
typed X-calculus variant.

In this book, we extend the technique based on Meredith's ideas to
the case of first-order classical Ilogic CQ.

A number of extensions to logics containing CQ {(as, e. g.,
most Lewis-style mooal logics, as well as other first-order
"intensional” logics with genuinely 'classical’ features) are
also possible and will be discussed elsewhere.

Technically, the glementary proof theory of first-order (classical)d
Iogic 1s considered here as a typed A-calcwlus or, eguivalently,
as a siratified system of "proof-combinators! ["combinatory logic”l.

The resulting formalism appears to be a proper (in fact, conservative>
extension of the ordinary typed A-calculus A. The latter one is just
a formalized/type-disambiguated variant of Curry's basic theory of
functionality (ICurry et al. 1958,1972], [Hindley & Seldin 19861).

Moreover, the extension is shown toc preserve the desirable properties
of a typed X-system, viz.

s congistency (here: non-triviallty of proof-gguality in first-
wordar classical logio),

* slrong-normalization (here: tarmination for the processses
of proof-détour elimination or proof-reduction and

e confluence of proosf-reduction in the " core” proosf-theory of
clasgical logic <(here: dafinitensss of processes of proof-
g tour eliminastions in a " type-normal? fragment of CQY.

From this we have at least two (related) groups of ccusequences.

Theoretically, we display rigorous versions of both a "natwral
deduc tior’ and an "axiomatic” point of view on proving in first-
wrder clasgical logic, matching resp. the typed X-calculus and the
stratified "combinatory logic"” presentations. If compared with this
approach, the traditional (Gentzen- Hilbert-style) ways of coping
with the same problems appear as lowse wayvs of speakirg, both
redurndant (1. e., introducing irrelevant data), on the one hand,
and elliptic (i. e., operationally under—specified), on the other.

(21 £21 .

1 Introduction

A The purely operational side of the approach can be best summarized

by saying that attempted, essentially, 1s an answer to the question
what is a classical proof? as 1f posed by a programmer. 1t should
become quickly obvious that, e. g., an interpreter for the proof-
languages introduced in this book presupposes essentially the same

s implementation philaosophy as an interpreter/compiler for the so-called
’ functional programming l1anguages.

In this respect, there is here much ressemblance with some
work on the Automath family of language, also opperatiocnally
orignted (I[de Bruijn 19801, [Rezus 19831, [Barendregt &
Rezus 19831). As distinctive features, one could note that
£1°]1 Automath is a more comprehensive enterprise, concerned
with the formalization and the automatic proof-checking of
the actual mathematics texts in terms of computer languages.
The logic concern is subordinated to this basic pragmatic

S attitude. Also [2°1 Automath is bound to adopt a relativistic
e point of view on proving: we can, in fact, formalize a text
(an actual piece of mathematics) in Automath starting at any
one of its points and organize the amount of logic actually
needed in the formal reconstruction of the text as a separate,
awd hor module (an Automath—"book”). So [£3°] there is no need
to be concerned explicitly with theoretical matters, as, e. g.,
characterizing the completensss of a particular choice of
proof-primitives: what matters in Automath is the formal
carrectness af the result (the last line of a "book"”). On the
technical side, the conceptwal backgrowund required here is
A virtually the same as that presupposed by Absiract Automath
[Rezus 19831 and the Constructive Type Theory of Martin-L3f
(as presented in, e. g., [Rezus 19861).

- Abstract and technical summary. The elementary proof-theory aof
first-order classical logic ([Gentzen 19351, [Prawitz 1965,19711)>
is formalized here as a typed XA-calculus A{! (sectiomns 3, B . The
calculus is equationally equivalent to a combinatory theory CLCQI]
(sections 2, 8). Both Ad! and CICQ] are extensional (in the usual
A-calculus sense’.

- Formally, Af! contains the [3,¥l-fragment of the Heyting proof-

calculus, here: A!. This is just a formalized/type—-disambiguated
variant of the Curry-Seldin theory of generalized functionality

(cf., e. g., [Hindley & Seldin 19861), with the usual (B-a—-typed
reduction/conversion rules (the ¥-proof-syntax duplicates, in a

sense, the " i-free" o-proof-syntax at a first-order level).

The essential ingredient (over the A!-syntax), used in order to
accommodate genuinely classical principles of reasoning is a new
abstraction operator §. This is intended to formalize reductio
ad absurdum or the principle of indirect reasoning.

With L (Falswum in‘the primitive provability/type-syntax, classical
negation is introduced "inferentially”, by A~ := A 3 L.

£ 31 [31

1 Introduction

Then the stratification induced by reductic ad absurdum can be
expressed by a typing rule:

(=ig): ¢ x ¢ A~ 1 Falxi ¢ 1 ==> ¢ I gx:tA—.afx] : A,
where ¢ is any "proof-context” [= assumption—-setl.

From an intuitive point of view, the (B-type) reduction rules for
i (the "Sd-rules"” of the calculus) are intended to measure the
complexity of a given application of reductio ad absurdum. The
associated " y-extensionality” assumption {(meant, as usually in
type-theories, to insure the wnicity of the syntactic opsrations
associated to a type—constructor) can be viewed as a reversal

of the usual \2)-rule.

Using a (B —reversal rule in this context leads, however,
to an inconsistent calculus/theory, viz., to a faormal variant
of the Automath-principle "classical proofs are irrelevant”.

The reduction rules of Ay! generate an appropriate notion of proof-
equality for CQ. We show ConslAd!l, 1. e., Post-consistency for the
equality of A4, by a pure type-free i-calculus method (section 63,
In particular, it should be clear that the proof of Conslli!l does
not depend on considerations about proof-reduction.

The book is organized in three main parts and a coda. (a) The
sections 2-4 are concerned with stratification matters, (b)Y the
sections 5-8 are devoted to a characterization af the sguational
proof-behaviors, whereas (c) sections 9-12 characterize the notion
of proof-reduction [= proof-détour eliminationl in first-order
classical logic. (d) The final section, 13, shows that a natural
{extensional) variant of Heyting's proof-calculus for the first-
order logic HQ can be embedded into Ay!.

(a) The main result on stratification 1is as intended/expected:

the underlying type-structures =mI[CQl (of A¥!) and mICQl (of CLCQI>
yvield eqguivalent stratification criteria and both are shown to
coincide, in extent, with the concept aof provability in first—
wprder classical logic <(section 4).

(b)) The sguivalence is preserved at equational level: indeed,
the A-variant Ag! and the combinatory theory CLCQl can be embedded
reciprocally, into each other; otherwise, the proof of this result
matches a pattern well-known from "type-free"” calcull (section 8.
The hard part of the work behind this kind of the equivalence
(viz., the embedding of A¢! into the combinatory theory CLCQl) is
done by appropriate abstraction "algorithms”: these are *typed”
extensions of the familiar ("extensional”) abstraction algorithms
gf H. B. Curry ([Curry e&f al. 19721, [Hindley & Seldin 19861).

As expected, the ”éyped" f—abstractions can be eliminated in favor

of usual typed A-abstractions and dJduplex negatio proof-combinators
AFAT + A~ o A, by #x:A-.alx]l = A[AF(Ax:A~.alxI))

[4] [41

1 Intraoduction

The "oracle functionals” A[A] extend the notion of construction
or effective procechurs, as available in Brouwer's Intuitionism
and Bishop's Constructive Mathematics [Troelstra & van Dalen 19881,

Somewhat unexpected is only the fact that the "complex" AfAl's
(where A =2 [B o Cl or ¥u.B, say)> can be eliminated recursively,
modulo proof-equality, in favor of "atomic” AfAl's (where A = T or
1l or a "prime" typesproposition Plu,,...,un]) and a few "strictly
linear" proof—-functionals (section 7).

These are the mnext proof-combinators, stratified variants
of the "type-free mext combinators” used essentially in the
proof of Cons(ly!l in section 6; "strictly linear” is taken
here in the sense of C. A. Meredith and means "definable in
terms of BCI-combinators”. (As conjectured by C. A. Meredith
in the fifties and as shown by J. Roger Hindley [19891, the
BCI-definable combinators are stratifiable.)

(¢} The latter result can be also reformulated properly in terms

aof proof-reduction. Specifically, we show (section 10) that, in Ay!,
the notion of reduction generated by an "extensional 1lifting" of
the "complex" Bd-rules is strongly normalizable and conflusnt.
From an intuitive point of view, this means that we can safely
restrict our considerations to a "type—normal” fragment "™Ay! of
Agt, 1. e., to the fragment where reductic ad absurdum is applied
only to atomic types/propositions (T, 1l or "primes”). Technically,
the full Ay!-calculus can be viewed as the result of a systematic
abbreviation procedure applied to MAY!.

As expected, one has first SKIAg!l, strong normalization for the
standard notion of proof-reduction of (the full) A§t—-calculus
(section 11). In other words, the proof-détour eliminations in Ayt
are characterized by terminating processes, no matter which is the
reduction-strategy actually employed: normal forms Lof proofs]l do
always exist In Ay!. Ve show, however, something more, viz. the
fact that SHIAH!l <{=> SRLA!]l <=> SH[Al], where A! is as above and A
iz the ordinary typed A-calculus (with types from a language based
on 7, 1 and 2. The first half of this (1. e., SELA#!l <=> SNLA!1)
is obtained by extending a familiar "negative translation" argument
(implicit in the Tl-interpretations of CQ into a proper fragment

of Heyting's first-order logic HQ) to the proof languages under
focus. The second half (SRLA!']l <=> SNLAl) follows by a translation-
argument, collapsing the A!—syntax onto the ordinary A-syntax.

Moreover, we obtain also CRI™™MAH!Y, 1. e., canflusnce for T™™AY!,
a Church/Rosser—type theorem (section 12), by extending a standard
technique <{(due to ¥. W. Tait and P. Martin-L38f, cf. [Rezus 19811,

[Barendregt 19841, [Takahashl 198¢91) to the case in point. This
insures UNLAYY1, wnicity of normal forms in the full calculus Af!,
i. e., the fact that the terminating proof-reduction processes
referred to above are definite, as regards the end-results.

£51 (%51

1 Introduction

(d) As a by-product, we can show (section 13} that a natural typed
X-variant of the Heyting proof-calculus faor HQ (without ad hoc
"permutative” and "l-rules”), AH! say, can be interpreted directly
into Ag!. This intepretation preserves equality and reductions resp.,
whence we have also Consl)H!]l and SNLAH!1l, trivially. Without the

ard fwe rules mentioned above, one has, however, TICRLIAH!D.

Related work. Apparently, the papers of Glen Helman [1983, 19871
are the only references available in print, so far, concerned
with the explanation of classical proofs 1in a context close to
the point of view advocated here. Helman has, however, no proper
proof-syntax and intends to apply category-theoretic methods

to the study of classical proof-equality. If considered in the
prolongation of the familiar CCC/topos—theoretic treatement of
Heyting's logic, this kind of approach should fail, in view of

a well-known fact (A. Joyal) on the unicity of arrows A =+ 0 (up
to equivalence) in bi-cartesian closed categories.

In extent, this book covers most of the subject matter of Prawitz’
{1965] standard — although technically defective - presentation of
Natural Deduction from a rigorous point of view (typed A-calculus),
advocating programmatically the priority of the classical logic
concept of & proof over the Heyting ("intuitionistic”) analogue.
The latter is accounted for as a special case.

Further details, related to work of [Prawitz 1965,19711 <(e. g.,
on "sequent!” systems, Beth tableausearch, A-model construction,
etc.?) and the analogous type—theoretic approach to first-order
modal logics are discussed elsewhere.
Our exposition is complementary +to material appearing in Girard's
Paris 1986-87 course [Girard et al. 1989]1; the latter is concerned
exclusively with Heyting proof-calculi.

Ackrnowledgments. The bulk of the work reported in this book has
been presented in lectures and conferences. In detail:

= the presentation of classical proof-calculi relies on talks
given during 1988-89 on various occasions and in several
places (as, e. g., [Rezus 1988,1089,1989%al);

*+ the work related to Heyting's logic and Martin-L&f’'s type
theory (CST) originates in lectures given at the University
of Nijmegen (Department of Computer Science) during 1983-1987
and has been mainly supported by the Dutch Scientific Research
Foundation [H¥WO] ([Rezus 1983a, 1986, 1986a,1987,1987a,b,cl);

= the general type-theoretic design is inspired by early work of
the author *(and other's) on the family of Automath languages
and CST (essentially, [Rezus 1983, 1986bl, [Barendregt & Rezus
19831 and [Rezus 1987a,bl). ‘

Finally, this book\can be also considered as a development of ideas
due, essentially, to Carew A, Meredith and David Meredith.

[6] . [61

R

il

2 Combinatory proof-syntax

2. First-order classical logic: combinatory proof-syntax. The proof-
syritaxy of the first-order classical logic is considered here as an
extension of the usual provability syntax, the syntax of formulas/
propositions, with a new syntactic category: the proof-terms.

Formally, the proof-theory of first-order classical logic appears as
a type-theory.

Tvpe syntax. We ldentify, via the propositions—as—-types isomorphism,
types/type—expressions and propositions/formulas.

2.1 Definition (Firsgt-order type syntax.

(1Y The universe of discourse U 1is supposed to contain referential
paints, denoted by U terms. The latter are ranged over by s, t,
possibly decorated. For pure logical theories, the U-terms are:

¢ U-variables (ranging over W: u, v, w, ... and, possibly,
+ U~constants (denoting distinguished points of W,

(2) The types/propositions are ranged over by A, B, C, D, E,
and make up an inductive class generated from

e proper atoms: Pluy, ..., un] and
s propozitional constants: T (verumd, L1 (falsum,

by closing under the primitive type-forming operators; here,
minimally, 2 (material implication and a first-order universal
quantifier ¥. (UFgeneralizatiomn:

+ (A o B), (¥u.Aful).
2.2 Notation.

(1> In what follows, LI[3,¥]l is the provability language of first-
order classical logic. (L3l is the corresponding propositional
language. (The propositional constants T, 1 are not displayed,
since they are assumed to be always present). A provability
language for the first-order Heyting logic HQ requires also
an external conjunction (denoted here by A or by &) as well
as v (disjuncticon and an existential first-order gquantifier
Ju (Wspecializatiom; notation: L{2,A,v,¥,3] (assuming the
primitive atoms T and 1, too).

2) The type/proposition spelling. Ve spare on parentheses, by
assuming associativity to the left and by applying the
usual conventions about separating dots [Church 19561. So,
e. g.b A BoC2o.C3A 23 (D2 A is the same thing as
((A 2B 3C)Y 3 (€ 34 o (D3 A,

(3) In a classical provability context, the remaining connectives
and the existential quantifier are introduced as abbreviations:

£E71] , £7]

2 : Combinatory proof-syntax

+ (A = (Ao D Linferential negationl,
= (A™) t= (ATY Ldouble negationl,
e + % = I- Linternal veruml,

s f = T {internal falsum,

t (A A B) = (A 5 B Linternal conjunctionl,
+ (A v B) = (A— A B~ Linternal disjunctionl,
= (A 2C B) = (A 3B A (B oA Linternal equivalencel,
¢ (Ju.Aful? := u. CAful)—>)— {t existencel.

Note that the "window" brackets [...J do not belong to the (object)
syntax.

2.3 Remark.

(1> The wniverse U and the U-variables make up a typical first-
order ingredient. We let Vary be the set of Uvariables. For
any first-order proposition/formula A, FV,(A) is the set of

[free U-variables of A, defined in the expected way. In

ol first—order theories, one has also specific ("non-logical”)

means to construct U-terms, as, e. g., function variables

and/or function constants. The Uterms are left unspecified.

In what follows, "Ik t :: U" is shorthand for "t is a Wterm”.

(2) In a ¥-free (purely "propositional") provability language,
the proper propositional atoms Pifu., ..., un] become bare
proposi tional letters/variables px, (1 € N). In such cases,
we use p, q, r, ..., possibly decorated as syntactic variables
ranging aver propositions,

Combinatory proof-syntax. It is well-known that the concept of
classical provability can be characterized recursively by an
o axiomatic presentation

Ve introduce such axiomatics in a slightly more rigorous way than
] in a usual logic text-book: indeed, in the spirit of the Curry-
Lo Meredith~Howard proposition-as—types isomorphism, an axiomatic
presentation corresponds to a stratified combinatory system. Ve
show that this is also the case for the (first-order) classical
logic CQ. Next, the following distinctions are in force.

* The concept of a classical proof [proof in CQl admits of
. a combinatory presentation =clCQl in a stratified [("typed”l
o combinatory proof-languags. It will be clear that mcf{CQl is
a proper [in fact, conservativel extension of the ordinary
typed combinatory logic [a formalized/type-disambiguated
version of Curry’'s "basic functionality theory"l. Actually,
®el CQl yields only a stratification criterion for a set of
basic objects, the ground proof-combinators. Under the
intended [propositions—as—-typesl interpretation, a ground
proof-combinator is just "the primitive proof” of an axiom
in a specific axiomatic presentation of CQ.

-

£al ' L8l

38}

Combinatory proocf-syntax

= Mcreover, the concept of a CQ-proof, as isolated in mo[CQI,
can be shown to admit of an eguational presentation CLCQI.
ClCQl formalizes the proof-eguality of CQ. The outcome is a
combinatory logic [a "combinatory proof-theory”l for CQ.

The stratification theory =nclCQl. We describe first the theory of
the first-order classical proof-combinators, called EBwoolean proof-—
combinators,. A Boolean proof-combinator is a stratified object. The
stratifications are mentioned by explicit [type-l parametrizations,
The set of axiomschemes/rules displayed below yields a combinatory
formulation of CQ. Technically, we define mncl[CQl. (The associated
equational theory is discussed later.?

2.4 Definition (First-order combinatory proof-terms).
(1) The growred Boolean combinators are cobtained from
+ { [a "constant proof”l,
+ primitive Boolsan combinators:
+ basic Poolewan combinators: I[AY, 2IA,B3, SIA,B,CJ, AILAT,
* Boolean oombinators: EoIAl, SulA,BI, 8JIA,BI, %JIAT,
by closing under grownd Ugeneralization 'w(..>, u € Varg.
(2> The combinatory proof-terms are obtained from grownd Boolean
combinators and proof-variables (p-variables) For atomic proofs:

%, ¥y Z, ... by closing under two proof-operators:

* megsage-passing O Meredi th detachment?): @G . .,...) and
r Ur-parameler-passing instantiation): 8 .., ...).

3> The combinatory proof-terms, ranged over by X, Y, 2, ...,
F, G, ... are defined inductively by:

* The atomic proof-variables and the ground combinators are
combinatory proof-termns.

+ If X, Y are caombinatory proof-terms and t is a (Fterm, then
@X,Y> and €<X,t) are combinatory proof-terms.

4> A Boolean proocf-combinator is a combinatory proof-term that
does not contain p-variables.

The proaof-variables make up a set Varc. I is the schematic "proof”
of an arbitrary non-logical "axiaom” (T,

2.5 Notation.
(1> Throughout in what follows we use the more familiar shorthand:
+ (XY) = @<«X,Y¥>, Xitl) := e, &), Q.,.X) = 1,D,

(2) Ve make economy on parentheses by association to the left and
by omitting oft the outermost pair.

[91 [ol

2 Combinatory proof-syntax

Let u =2 [us...un] be a sequence of pairwise distinct (variables,
n > 0 (alternative notation: u = [uy ¢ U... lu. :: U)., We write
next ulvl for [u....un,ul, and assume that u is distinct from the

elements of u. For convenience, we write "v &€ uw' for the fact that
that v is among the elements of u. Also, for any type/proposition
A, "FV,(A) £ u' means that the U parameters of A are in u.

The provability predicate ELC . .) of CQ is intraoduced in terms of
praoof-combinators.

2.6 Definitian (Rl CQl-stratification).

(1Y Classical axwioml{—-schems) s

¥ EBu R T,
X<(I>: &, I[AZ A o A,
G RFo ELA,BI Ao .B o A,
(S>: F, SEA,B,CJ Ao ((E3C s . AoBo (Ao,
A Fo ALAJ i A oAl = ALl ol AL,
Hu): By EOlAJZ : A S ¥u. A fu not in u,FV,A)l,
(Gu): By, SoldA, Bl : ¥u. (A o2 B> = .%¥u.A o ¥u.B {u not in ul,
X(@u): Bu 80IABl : A = ¥u.B o .¥u. (A o B) Lu not in u,FVu(AD1T,
¥ (Ew: By £0TAT P¥u.¥v.A o Yv.¥u. A fu, v not in ul,.

2Y Basic rles v not in ul:

[oela: Fo F: A>oB, B, X : A ==> &k, FX : B,
[¥ela: FBL F : ¥v. ALvY, ko t 1t U==> kB, F{tl : Afv:=t],
[‘sfi]oo: kutv:l X{IV:{}‘ H AEV}) == Fh:u !vt XEVB . ¥V~ AEVB:

where XIv] is a ground Boolean combinator.

Where A is a type/proposition, X is a combinatory proof-term and
u = [uy...unl, n > 0, the explicit W parametrization of the axiom-
schemes "k, X : A" above (read: "X proves A") is supposed to be
such that FV.,(A> £ u. Uvariable clashes are avoided as usually.
The starred items in the above turn out to be redundant in =m[CQl.
The bagic stratification rules [Delo, (Yelo, [¥iloo are known as
modus ponens, Instantiation, and grownd U-generalization resp.

We can now define the concept of CQ-provability "wunder assumptions”.

Froof-contexts: stratification relative to a formal context (basic
type-assigrnment) . From an intuitive point of view, a hypothesis or
an agssumgtion in a proof is a virtwal proof. Formally, the virtwual
proof-space 1s a a class of finite sets of assumptions. The "points”
of this "space"” are the so-called "proof-contexts”. This terminology
comes from Automath (cf. [van Daalen 19801, [Rezus 19831).

A (proof-) context (an atomic type-assigrnment) can be viewed as
a partial map ¢ from finite sets of p-variables to sets of types/
propositions. This is much similar to a Curry basis [Curry et al.
1958, 19721, Note, however, that a context, in the present sense,
is Wparamstric.

[10] {101

2 Combinatory proof-syntax

The combinatory concept of a proof defined by ncfCQl is extended
next to proof-contexts. Technically, this corresponds to the concept
of a formal deduction wunder hypotheses [in CQl and characterizes
syntactically the classical conseguernce relation (cf. for instance,
[Montague & Henkin 19561,

2.7 Remark.

(1> Contexts are displayed in full, if necessary and ¢, possibly
decorated, range over cantexts. So, a context ¢ is denoted
by showing its "graph"” (as a map). We write, for instance,
¢ =0 % ¢+ Ay 1 ... [%~ : AL 1. Every element [x, : A, 1
of the context ¢ is said to be a bagic cell of the context.

(2> In meta-notation, U-parameters can be shown explicitly, either
as in ¢ful or by making them explicit as U cwells, of the form
lug ¢ W, In the latter case, we can display the cells,
as well, intersticing them among the basic cells. [Note that
U is not a types/proposition.l So, the generic notation for

e U-paramstric contexts could be:

[X:; H A1]x<n = [X] . A-.]...[u, H w-~-[Xn f An].

(3> A p-variable x (a U-variable u) is said to be fresh for a
context ¢ if x (resp. u’ is not in the domain of ¢.

(4> The notation "¢ - t :: ' is shorthand for "t is an (term
relative to ¢”. (The "relative”-proviso is not important
if the (term structure is not specified. However, in the
general case, such a provisa is meant to insure the fact
that ¢ is of the form ¢f[ul, if t contains a variable u.) ’

2.8 Notation.

The empty context (B) is unique and is shown by [1.

The wnion ¢, U ¢z of two contexts ¢,, ¢» is denoted by ¢,¢=.
The extension of a context ¢ with a basic cell [x 1 A}

, is a mp ¢ = =%, ¢+ Ay 1...L %n : A~ 1L = : A 1, such that
i ¢' is also a context.

woa

2.9 Conventions.

(1> [Convention ¢l1. Ve use the sequential notation ¢{ x : A 1 for
context (-extension’s, assuming, unless otherwise specified
explicitly, that { x : A1l is nwt an element gof ¢.

(2) [Convention ¢,]1. If ¢ =1 %, ¢ Ay 1 ... [%n : An 1 and the
(fvariable u is fresh for ¢ (i, e., 1f u is not free in
the As’'sl]l then it is convenient to indicate this by writing
¢l u :: U1 and to consider that ¢L u :: U1 stands actually
for a context ¢’ ful.

(111 {111

2 Combinatory proof-syntax

"Formal deduction under hypotheses". In what follows, the predicate
Fu is extended up to a relation . holding between contexts ¢ and
"typings” ¢ = [X : A}, where X is a combinatory proof-term and A is
a type/proposition in L[{5,¥]1. The statements of the form ¢ . @,
with ® as above, are said to be t-statemsnts ["typing" statements].
From an intuitive point of view, thereby defined is a concept nelCQl

of formal deduction wunder hypotheses in CQ.

2.10 Definition (The combinatory proof-system meLCQI).

(1Y Context rules. Let "%” be "X : C". Then

s < > Fo ® ==2> [1 bFe 9, (@ = [uy 53 UW...lu. :: U, n > 0y,
G <I>: [x : Al bt x : A,
<K>: ¢ . o ==> ¢[x A1l e o,
KK¥>: @ o o ==> ¢[u :1: U1 o o,
(2) Type-derivation.
f=el: ¢ . F AS3B, ¢ Fc X : A==>4¢ . FX : B,
[%9]: ¢ e F @ ¥u,Aful ==> ¢ . FL£1 : Afu:=%t3, if ¢ ¥+ £t :: .

S0 nelCQl defines a set of t-statements ¢ . X : A, its adwissible
"typings', extending the combinatory proof-term stratification from

proof-combinators to p-variables as well, i. e., ultimately, to the
N full set of combinatory proof-terms. Note also that the context-rules
ST and |conventions (¢cus) insure the fact that, e. g., in rule [¥el,

the U-variable u is not free in t and (the types of) ¢. By rule < >,
e satisfies the axioms ay, 2, B,),), ¢, ¢, Sw,
By, (4w of nclCQ?, for any context. If no confusion can arise,
the subscript "c¢” on turnstiles "+." is further omitted. Also, the
= {Fparametrizations are ignored notationally for empty contexts. So
where u = {u,,...,un] contains the (Fvariables that are free in A,

[1 =X : Afull means, in fact, [1lu, :: U...lus 1t U Fc X : Aful
and iz equivalent ta F, X : Afu].

Abstraction "algorithms” for w[CQl. The proofs of the so-called
“"deduction theorem" in "Hilbert-style” axiomatic systems for CQ
are meant to establish the existence of appropriate "abstraction
operators"” over assumptions in a formal deduction. In the present
setting, this is a small programming exercise (relying, in essence,
on [Schinfinkel 19241; cf. [Curry et al. 1958,19721),

2.11 Definition (Abstraction "algorithms” for =[CQ1).

(1> "Functional® abstraction over assumptions. Vhere a is a type/
praoposition in L[3,¥1, let XIx] be a combinatory proof-term
such that ¢ x : A1 b X[x] : B. Then ¢ F X' := X.x:A.X[x] is
defined by induction on the structure of X[x], as fallows:

(1> If XIxI = x then Axx:A.XIx] = I[A]
for ¢l x : A1l XIx3 & x : B

X

B

E) If XiIx] = Y [x is not in Y]l then

A,
«xXA. XIx1 = KIB, AT
for ¢f x : A1 - XIx2 = Y .

f121 f121

to

@

@

)

(Ho

£

o
0
C

W)

(1L

[131

Combinatory proof-syntax

If Xfx1 = Fx [x is not in Fl then Axx:A.XIx] = F
for ¢f x: A1 +-F : A= B
and ¢ x : AJl +-x : A
¢ x : A1 + XIxI = Fx : B.
If Xix1 = (FixD (GIx]> [and clause (f) does not applyl
then Ax.x: A X[x3 = SIA,C, Bl OQux: A FIxD) Ouex: A.GIx]),

L

for ¢f x: A1 - Ffxl : € o B
and ¢L x : A1 + GIx} : C
¢L x Al F XIx3] = (FLx}>GIx1> : B.
If X[x3 = (FIxI>L ¢}
then Jux:A.XIx] = BulA,BIO&x:A.FIxI){t1,
for ¢f x : A1 + FIx] : ¥u.BIul
¢l x : A1 Wt :: U
¢ x : Al F XIx] = (FExI>It]l : B = BIu:=tI.

Generalization as " first-order” abstraction. Let XIul be a
proof-term such that ¢ u :: ¢ 1 + X[ul : Aful, where A is
a type/proposition in L[>,¥1. Then ¢ + X' := !,u.XIul is

defined by induction on the structure of X[ul, as follows:

If X[ul is a ground combinator then !.u.XIul = !.. X[ul.
If Xful = Y [u is not in Y and is not free in A}
then !au. Xful = EJIAZ (D

for ¢ u :: U1 - X[ul 2 Y : A (u is not free in Al.
If Xful = Flul [u is not in Fl then !su.X[x] = F
for ¢f u :: Y1 F F : %u.Aful
L u 1 U] W+ u i U
¢ u 1 U - X[ul = Flul ; Aful.

If Xful = (FLul) (GLul) [and clause (fy) does not applyl
then !su. XIx] = SulB,CI U 4u.F) (! eu.

for ¢f uw :: U1 b+ FLul : Bful = CLul
¢l u it Y1 = GLull : BEul
¢l u :: U1 F X[ul & (FLul) GIul) : CIul = A.
If Xful = (Ffuld(s]l [{u is not in sl,
then !xu.XIx] = £JIBI (txu.FIul)is]
for ¢ u :: U1 - F : ¥v,BI[v]
¢f u:: Yl s :: U [u is not in sl
L u :: U1 F X[ul = (Fful)[sl : BiIv:=s] = A.

Negative-abstraction: reductio proof-operators. For all A, ¢
and X[x}] such that ¢l{x : A-1 + XIx] : L1, set, in context ¢,
xxXi A” . XIx]D = ATAT Ouex: A—. XExDD.

Remark.

One can extract different "abstraction algorithms" from 2.11
(1>, (2% by imposing, in each case, a deterministic ordegr in
the application of the clauses. The most efficlent “"algorithms”,
as regards the compactness of the generated combinatory code
apply the "extensional” clauses (f), resp. (fu) first, whenever
this is possible. Conventionally, we choose this specific
seguentialization of 2.11 (1), 2.11 (2) resp. as a stamdard
definition for Xx (x> and !, resp.

131

2 Combinatory proof-syntax

(2) Assume that ®lCQl (resp. m[CQl) has been extended with the
additional (primitive) ground combinators £[A,B,C1, £7A,B,C3,
BullA, Bl and LuflA, B3, stratified by

8): [1 +BIA,B,C] : A Bz .CocAzo (C=1B,

) [1 - LCEAB,CT 0 A (Bz2C 2 .Bxos (A=,

Bu?: [1 - E0EAB] ¢ A2 B o .¥u. A o ¥u.B [u not in FVL(A,)1,

Cu>: [1 b+ CUfA, BT @ %u. (A = BIul> = .A = ¥u.Bful [u not in BV (AYD.

tSuch combinators are, in fact, definable in el CQl, nl CQI.
See below.l Then, applying a well-known technique, due to
Haskell B. Curry, one can generate significanly more compact
combinatory code, by analyzing (S) and (S.) abave into:

(B> If XIx] = F(WGIxD [(x is in G, but not in F1
then Axx:A. X[x] = BIC,B,AT(F) Qux:A.GExD),
for ¢f x : A1 +F : C 33 B
and ¢f x : A1l b+ GIxT : C
¢l x : A1 + X[x] = F(GIxD)» : B.
(o)) If XfxI = (FIx1)G [x is in F, but not in Gl
then Axx:A . XIx3 = CIA,C,BIQux:A.FIx1) (G
for ¢l x Al - FIx3l : C 3B
and ¢[x
¢l x

Al +G : C
A1l + XIx] = (FIxI>G : B.
(&) If XIxI = (FIxDI>GIxD), [x is in both F and GI
then Axx:A.X[x] = S[A,C,BI Qux: A.FIxD) Qux: A.GIxD),
for ¢ x : Al - FIxQl : € o B
and ¢ x : A 1+ Gfx3 : C
¢L x Al + XI[x] = (FIxD (GI[xI> : B.

(Bu?» If X[ul = F(GIul?’ [u is not in F and is not free in A, BI,
then !xu.X[x] = BJIB,CI(F) (tyu.Glul

for ¢f u :: 41 - F : B C
. ¢l u :: U1 F GIul : B [u is not free in B, CI
o ¢ uw :: U1 F X[ul = F(GIuD) : C = A,

(Cow) If Xful = (FIul’>(G> [u is not in G and is not free in B1,
then !'au. XIxT = CuIB,CIUu.FY) (G

for ¢f u :: Y1 & FIul : B o Cful
''''' ¢l u:: Y1 -6 : Blu is not free in BI]
¢ uw s W1 = XEul = (FLul) <G> : Tull = A.

& Gu? If XEul = (FLul> GIul), [u is in both F and Gl
a then !au. XIx] = SOIB,CIau. F) (1yeu. &

for ¢f u :: Y1 = FIul : BIul o CIul
¢ u :: Y1 = GTul : Blul
L u :: V1 F X[ul = (FLul) GLuld : CIul = A.

The most compact version of the latter "algorithms” must, of
course, apply clauses (f) resp. (fu) first, whenever possible.

2.13 Remark (The growurnd proof-combinators).

(1> For all types/propositions A, B, C in LI3,%], the (positive)
ground proof-combinators are such that:

[14] {141

£ 2 Combinatory proof-syntax

L 1 + IfAT = 2xx'A.x,
[1 + KIA,BI = 2xx1A. Xy B. X,
{ 1 F S[A,B,CT = Jax: (Ao(BaC)). Xxy: (ADB) . Az A . x2(y2),
[1+ KOEAT = dxxt A, Txu.x,

fprovided u is not in EV,(A)1,
[1 F SulA,Bl = A«x: (Yu. (ADB)) . Ay ¥u. A, txu.xlul (ylul),
[1 F 8ulA,Bl & Awx: (ADYu.B). txu. day: A, (xy)Lul,

[Lprovided u is not in FVu(AY1,
L 1 b €0fAT 2 X (Yu.¥v. A, Yuv, txu.xfullvl,

(2> If gfA,B,C3H, €fA,B,CH, BolA,BR and CufA,Bl are among the
ground combinators [cf. 2.12 (2)1, one has also, for all
types/propasitions A, B, C in L[3,¥%1, with the extended
definitions of Xx and !,

L 1 b+ BIA,B,CI & Jxx:t (A9B) . Axy: (CoA) . Axz:C.x(yx),

L 1 b+ €CEA,B,CT = Aax: (AD(B3CY) . Axy: B. Auz: A. xX2ZY¥,

[1 F BulEA,Bl & Xex: (A0B) ., Axy: (Yu.A). tau.x{(ylul>,
{provided u is not in FVu(A,B)1,

[1 + CulA,Bl = Xax: (fu. (A0B)).Xxy:A. tau.xluly,
[provided u is not in FVi(Adl.

(3) For all types/propositions A in L[3,¥1 and all contexts ¢,
) [1 F ALAD 2 Jax: A= gayiA—.xy [¢ A= 3 A 1,

FProof. (1)>-(2). VWe exemplify only the Ax«expansion of SfA,B,C].
The other cases are similar [for combipators, use clause (f401.

Axx: (AD. BoO) L Ay (ADBY . Azt A.xz(yz) =

AaX: (AT, BoCY Ay (ADB) . (SA,B,CI Ozt A.x2) (Anzt A, . y2)) =
AxX: (AT, BoC) . Auy: (ADBY.S[A,B,CI(x)(y) = [clause (£)1
AxxX: (AD.BoC) . SIA,B,Cl(x> = S[A,B,CH [clause (£)1.

WO

(3) By the definition of Xx and g« one has

L1 F et A= daYi A7 Xy B Xt A=, CATAT Oyt A—.xy)) = [clause ()1
Axx: A=, ALAT (x> = [clause ()1
AfAT L: A= 2 Al. O

o

2.14 Theorem (The classical type—assignment! combinatory versiomn.

For all types/propositions A, B in L[D,%¥] and all contexts ¢,

(Oidae) ! —— e e e e e i ,

(Ol) —— e e e ,
¢ b fax:A- . XI[x3 : A

(15] ' [151

2 Combinatory proof-syntax

¢l u 1 W1 F XIul : AJul

Froof. (Di2x): By induction on the structure of YIx]. (Sif«): By
(Didx?, we have ¢{x : A71 F X[x1 : 1l ==> ¢ + Xux: A~ . XIx3 : A=,
while [1 + AfAY : A= - A, So, ¢ + A[A] : A= 5 A, for any context
¢ such that ¢ %, for some . From this, one obtains, by (2e),

¢ F gaxt AT XIxT = ATAT Ouex: A~ XExD) : A, (¥i!x): By induction on
the structure of Xful. O

2.19 Theorem (Fositive extensionality).

1

NDAx)=: If X is not in F, ¢ F : A 0 B ==> ¢ + Jux:A.Fx F.

%'t If uw is not in F, ¢ - F : ¥Yu. A ==> ¢ + !4u.Flul

F.

FProof, (ASAx?=: From the definition of A.«x:A.XIxJ, by clause (f).
(¥!x?=: From the definition of !.u.X[ul, by clause fu)>. O

2.16 Remark.

(1> If ¢ - F : A, set ZTAI(F) := SHA—,A, LICIIAD) (KIA,A-DC(F)),
in context ¢. Then, for all types/propositions A in L[, ¥1,
all contexts ¢ and all combinatory proof-terms F such that
x is not in F,

(Mo dw?) =t ¢ FF : A ==>¢ I gxx:A7.xF = ATAJ(U[AT(F)> : A.

(2> If the CIA,B,Cl-combinators are among the primitives, set,
alternatively, ¥.[Al := CfA-,A,1JC(IfA-T]>. Then (2-¢x)= holds,
in the same conditions, with the new definition of v.IAJ.

Froof, (1) Assume that x is not in F and ¢ + F : A. Then
¢ dax: A™.xF =5 ATAY (Axx: A&~ . xF) =

ATAT(SEA7, A, LT Ouext A~ %) et A= F)D
ATATCEEA™, A, LT AATATDD QQuex: A~ . FO) =
ATARCGGIA, A, LICGIEAT) (EIA,AIC(F))) : A,

Mo ouT
i

(2) In the same conditions, with ground combinators CI4,B,C1,
¢ gz A~ XF Zge ALAD Qaxi A~ . xF) =
ATATCIA LA, LI Qe A-) (F)) =
ATARCCIA A, LIEIA-DXEYY ¢+ A O

W T

Standard proof-combinators: ewamples. In the above, one could have
defined, e. g., I«[AJ := SL[A,BzA,A](KIA,BoADY (K[A,BI), along the
usual "type—-free” pattern, in which case [1 + IxIA] : A 2 A, too.
In the end, ZI[A,Bl] and £0fAl are also eliminable in the context of
nLCQ) [exercisel. (This leads to technical complications in the
formulation of m.L{CQl.?

[161 [161]

ey

2 Combinatory proof-syntax
On the other hand, it is most convenient to define other Boolean
combinators, in a uniform way, by standard A« and !«—expansions.
In what follows, we exemplify a few relevant cases.

Note that most [T,1l,3,¥1-proof~combinators appearing below should
be already familiar from "type-free” A-calculus or, alternatively,
from the proof-theory of Heyting’'s logic.

The [(A—v=3l-proof-combinators displayed next are, however, genuwinely
rlassical ("Boolean”),

2.17 Definition.
For all types/propositions A, B, C, in L[z, ¥1,

L LT, L, o-procf-combinatarsl .,

HalAZ = AxX T Ay A0,

€'IA,B3 = dxX:A.Axy:B. vy,

2fA,B,C3 = AaX: (ASB) L Axy: (CoA) L Xz C.x(yZz),
E'[A,B,CT := Axx: (ATBY . Axy: (BoC). Az A. y(xz?,
£TA,B,C3 = Axx: (AD.B2C) . Axy:B. Az A. %2V,
CxIA, Bl = AxX!A. dxy:!ASB. yx,

ZTAZ = CulA, LT [= Xax:A Ay:A—.yx 1,
WIA,B] = dxx: (A, ASBY , Ay ASB. xyy,

wlAD = X=X l. dayr A x.

2@ [r—procf-combinatorsl:

°LA,BY = AxX!A Axy:B.Axz: (A 5 B7).zxy,

UfA,B,CT = AxX: (AD.B2C) . Az (AMB) . x(1a,slzl) Ca,slzd),
E‘l {{A, B}i = ;*Z: CA~ABY. 1‘;,5{2]],

P=[A, B} = Axz: (ArB) . 24.lz],

where 1a.elzl
and 2a.slzl

BxZ' AT Z (XX A Ay’ :B. 27 %)
gz’ 1B .z (Ax' A 2",

i

(3) Lv—proof-combinatorsl:

Z+[A, B3 = AxXi A, Axz: (A—AB™) . P2 IA—, BT (2> (x),
J=[A,BJ = Axy:B.Awz: (A=AB™) . E2IA-,B~1(2) (y),
£fA,B,C1 = AxX: (ADB) . day: (ADCY . Axh: (AvB) ., gaz:C—, h(Fix,y,2D>,

where Fix,y,z] = BIA", B 1 Oux’'1A. 2(xx")) Ay’ :B.z(yy’).

4> L¥—proof-combinatorsl:

BulA, Bl = AxXi (ASB) . Awy: (Yu. &), txu.x(ylul),
fprovided u is not in FVG(A,BY1,
Cuia, Bl = AxX: (¥u. (ASB)) . Axy:A. tu.xfuly,

{provided u is not in FVg(Ad 1.

{171 £171

2 ’ Combinatory proof-syntax

S [3-procf-combinatorsl:
wfAY} r= e, Xt Aful. Ayt v, (Affui=vI) ™), ylulx,
[provided v is not in FV,(A)1,
T{A, Bl = ekt (Yu, CARuJoB)) L Ayt (Gu. Aflul) . §az:B-.y(Fix,zl,
[Lprovided u is not in FV,(B)1,
where FIx,z] 8 !av. A&y’ (Aflui=v).z(xlvly').
Then, one can establish easily the following
2.18 Fact.
For all types/propositions A, B, C, in L[, ¥1,
Kad: [1 + Ex[AZ T .A2T7,
i 'y 1 + K'EA,BI A o .B 2B,
o @: [1 + BfA,B,C] : ASB3.C3A3 (CoB),
E&*'>: L 1 -B'fA,B,C] : A2B3.Ba3Co2 (Ao Q),
o Cx>: [1 + CulA,BJ : Ao .A 3B > B,
: (wv>: [1 + vIAlX : A o A,
W)r: [1 + WIA,BJ ¢t Ao (A>3 B o .A 3B,
K w): [1 + wlAl i o4,
9, (P>: [1 + PIA,B] : Ao .Bo@ ~ B,
~~~~~ : AH: [ 1 +-UEA,B,C] : Ao .BoC3o A AB3OQ,
(Py>: [ 1 + P,EA,BI : (A A B)o A,.
) ) Fz>: [ 1 + Pz[A,B] : (A A~ B)a B,
""" (Js2: £ Y + J,0A,B] : Ao (A v B,
(J=: L 1 + J=[A,BI : B3 (A v B,
@: 1 +DEA,B,C] : AoC3 .BaCo (Av BoO,
j EBs): U 1  BulA,BI : A3 B2 .¥u. A 3 ¥u.B,
- [provided u is not in FVu(A,B)1,
Cu): [ 1 + CulA,BIY ¥u. (A 35 Bful> 2 .A 2 ¥Yu.Bful,
‘ {lprovided u is not in FV.,(A)1,
(w): [ 1 + mEfAl : ¥u. (Aful o Fv.Afu:=v]>,
Eprovided v is not in FVo(Afull,
Vi (x>: L 1 + TEA,B] ¢ ¥u. (Aful o B> 3 . (Ju. Aful> o B,
[provided u is not in FVu(B)1,.
Proof. Straightforward [ exercisel. 0O

2.19 Remark.

(1> Although the "pairing” simulation P[A,B] uses a well-known
pattern (from A. Church), the associated projectors P.[A,Bl
i := 1,2] are genuinely "Boolean”. U[A,B,C] is a wncurry-ing
proof-combinator (it stands for a proof of the "importation
law”).

{18l £18l




i AR

2 Combinatory procf-syntax
(2> Notably, the primitive/ground {o,¥l-group (without A [Al, but
with say wlAl), together with the [A—v-31-group are alsoc known
to yield a complete axiomatization for the Heyting [ 19301 logic
Lexercisel. (The [ l-A-v—-3l-intuitionistic principles are, of
course, simuwlated 1in terms of reductio ad absurdum. )
2.20 Definition
(1> For all types/propositions A, B, C in L[2,%¥], any cantext ¢
and all combinatory proof-terms X, Y such that ¢ - X : A o B
and ¢ Y : C o0 A, set, in context ¢,
X 2 Y := SHC,A,BIMKEIASB,CI(X)>> (YD,
(2> For all types/propositions A, B in LI[>5,¥] such that u is not
in FVu(A,B), any context ¢ and all combinatory proof-terms X,
Y such that ¢ X : Ao Band ¢ Y : ¥u.B, set, in context ¢,
X 20 Y = SulA, BIKGIASBI(XY) (YD,
2.21 Remark.
(1> For all types/propositions A, B, C in L[2,¥]1 and any context ¢,
L2y = e e {x is not in X, Y1.
¢ X &Y = Aex:C.X(Y¥x> : C o B
(2> For all types/propositions A, B in LI[3,%1, such that u is not
in FVu(A,BY, and any context ¢
{2gd: -—rmrm—————— fu is not in X, Y1.

Froogf., [cl: If x is not in X, Yand ¢ - X : ADB, ¢ + Y : CoA then

i

¢ F 2xx:C.X(YZ) = SEC,A, BT (Qux:C.X) (hux:C. Yx)
= S[C, A, BICKIASB,CI(X))(Y) Zar X 2 Y : C o B.

Loul: Analogoﬁsly. 0
2.22 Exercises.

(1) There are, certainly, many alternative definitions for the
Boolean combinators above. For instance, one could have had,
for all types/praopositions A, B, C, in LI, ¥1,

(11> K«[AY := KIT,AZJ.

(12> K'[A] := K[BoB, AIL[BI.

L1091 f1el




2>

3

(4>

{201

Combinatory proof-syntax

(13> Bf[A,B,CI := Sy (K.Sz)K=,
where the most general type-parametrizations are:

S, = SfASB,Co. AoB, CoAn. CoB3

Sz = SIC,A,B]

K = KICo(A=BYD. (CoAYZ(CoB)Y, AnBl
K = KIADB,C]

(14> B'[A,B,C] := B, (8:B2)K,,
with most general type-parametrizations:

B, = BIBoCo. AoB, BoCo. AC, AnB]
B- = B[B,C,Al

S, = EIBxC, AoB, ADCI.

K, = K[AoB, BoCl.

(15> C«[A,BI := BI[ADBoA, AoB=B, AJ(SHEC, A, BIILADBI) CKEA, ADBI),
with, in particular,
YIAL := BIA™2A,A=,ATC(SIC,A, JICILAI)) (KEA,A-D) (= CuIA, LT 1.

(16> BulA,BY} := BIC,D,EI(S.IA,BI) (KLEASBY>, [u not in FVG(A,BY1,
where C = ¥u.(ADB), D = [¥u.A 5 ¥u.Bl and E = [A o Bl.

(17> CullA,Bl := BIC,D,EICEB'IA, ¥u.A, ¥u. BIKJAD Y (SLIA,BD),
’ fu not in FVu(AY 1,
where C = [Vu.A:&u.B], D="[A o %u.Bl] and E = ¥Yu(ADB).

Show that (11>-(17) above yield the same typings as earlier.

The standard definition of C[A,B,C] is the one given by A
expansion. Alternatively, one could have had, for instance,
COA,B,C] := 84 (Ba © 82)(K,Kz), say, for appropriate type-
instances Ss, 8=, K., K2, B, of S{A,B,Cl], K[A,Bl, BIA,B,Cl.
Establish the most general type—parametrization for Ss, S=,
Ks, Kz, By (and 2, in the above.

On the other hand, with both EBIA,B,C] and C[A,B,CJ among the
primitives, one could have defined, in a straightforward way,
e. g., B'[A,B,C] := CIBaC, ADB, AoCI(BI[B,C,A]), with the same
typing as before.

If BIC,A,B] were among the primitives, one could have defined,
alternatively, in a context ¢, X ¢ Y := BIC,A,BI(X) (Y, for

all types/propositions A, B, C in L[3,%1, and all combinatory
proof-terms X, Y such that ¢ + X : Ao Band ¢ +Y : C o A,
Analogously, if BulA,B] were among the primitives, one could
have had, in any context ¢, X ou Y := BLIA,BI(X)(Y), for all
types/propositions A, B in L[3,¥] such that u is not in FVu(A,B),
and all combinatory proof-terms X, Y such that ¢ - X : A 2 B

and ¢ - Y : ¥u.B. In such conditions, both properties [ 21, [ gyl
above are preserved, with the extended definition of A« and !

{201




[——

Cpremaniintaiid

B
_j

3 First—-order proof-theory

3. The type—theory of first-order classical logic. The set of
primitives for the intended classical proof-notation consists of
the following collection of symbols and syntactic proof-operators:

+ ground forms:
* X, ¥, Z, «.. proof-variables, possibly decorated,
. a primitive "proof” (a proof-constant),

= abstraction-forms:

. X(...2 positive (A-) abstraction (while),

L A S negative (§-) abstraction <(until),

LI I G U-abstraction (U-generalizatiom,
*+ application-forms:

t Q@G .., application (message passing,

e B . 0,000 Winstantiation (U-parameter-passing,
+ separators: ¢>r01: .,

The proof-variables make up a set Vara. The application operators @,
@ are never displayed [see 3.3 (2)]. {l represents, in intention, a

primitive "proof” of an arbitrary non-logical "axiom” (in practice,
we cope with particular first-order theories, not with "pure lagic").

3.1 Definition.
The proof-terms (for short: p~terms or just terms), ranged

over by a, b, ¢, ..., £, g h, ..., possibly decorated, are
then [onlyl of the form:

® Xry Yer Zry .. plroofl-variables [n € NI,
Q a "primitive proof”,
= A(lx:A).alx> positive abstractions ("deduction"’,
+ fx:Al.allx negative abstractions (" reductio"),
+ Q(f, a2 applications ("message-passing'),
e t(fus: b, affuld !-abstractions (" {/generalization”),
* 8(f, U-applications (” (/parameter—passing"),

where A is a type, t is a U-term and, [...] is used to display
(possibly vacuous) occurrences of a variable in a proof-term.

Terminology. Further, the subterms of proof-terms, the fres and
the bound p~ resp. U variables are supposed to be introduced in
the expected way (here A and § are p-variable binders and ! is a
(/variable binder). In particular, for p-terms a, FVa.(a), BVa.(a)
stand resp. for the corresponding sets of p-variables. Analogously,
FVu(a), BVu(a) refer to Uvariables. It is convenient to have
FV(a) = FVa(a) U FVu(a). A closed p-term (or a proof-combinator
is then & p-term a with FV(a) = @.

t211 t211




3 First-order proof-theory
3.2 Remark (a-conversiomn.

As usual in languages with abstractors, proof-terms diferring
in their bound variables only are identified. Ve ignore thus
a—conversion subtleties and assume that the reader is able to
perform correctly systematic a-reletterings. Formally, one

must assume that =, £ =, where = is syntactic identity and =,
is a p~term congruence generated by: .

(X2 Ax:A.allx] 2o Ay:A.allx:=y1l, {y fresh for aJ,
a->: Ix: A allx] =a y:A.alx:=y], (y fresh for ay,
Qs ¢ tu.afful He 'v.aflu:r=v], (v fresh for aj.

3.3 Hotation.

(1) The p~term spelling. We spare on parentheses by associating
to the left and by omitting oft the ocutermost pair.

(2> We use also the following shorthand:

A{fx:Al.allx],

+ (Ax:A.alx® :
* i x:Al.allx],

(Ix:A.aixh

nuwnu

(ab) 1= @dCa, b,

= (tu.afuld =t ({w a2,
s (al t1> = 8, ).

(3> The substitution ”opérators" on proof-terms are "...[x:=al”
and "...[u:=t}’; they have the usual meaning ("x becomes a
in ...", etc.).

3.4 Remark.
(1> In a first-order "application"-term of the form altl := @(a,t>

tW-instantiation at t1, the term t appearing in brackets is
always a U-term. '

2 UV 1is not a type and is always discarded in notation. But the
usual types/propositional labels on p-variable occurring within
the scope of an abstractor <(here: X, §) are always mentioned
explicitly.

Froof-contexts and stratification (typg—-assignment). The definition
of the basic type-assignments (proof-contexts) makes up the initial
clause of a recursion.

A proper type-assigrment 1s an extension [as a mapl of a context

to a (finite) set of p—terms. So, ultimately, a type—assignment is

a partial map from p~terms to types/propositions,

The admissible type-assignments for CQ are given by typing rules.

(221 (221




3 First-order proof-theory
Syntactically, a typing rule displays the graph af type-assignments.
One has, essentially, t-statemsnts of the form ¢ - a : A, where ¢
is a context, a is a p-term and A is a types/proposition, such that
a typing rule can be also seen as an operation on t-statements. The
general form of a typing rule (r) is:

(r): (€, - ay 1 A2 & ... & (C F an ¢ An) ==> (& + a : A)

where & and ==> stand for the metalinguistic conjunction and the
metalinguistic conditional resp.

Alternatively, the previous display of rule (r)> can be arranged
vertically:

¢~| - as o A'l
<« e n > O

The global context-rules are similar to some of the so-called
structubal rules of a Gentzen [-system (”"sequent system”, [Gentzen
19351, except for the fact that the latter ones apply to seguences.
3.9 Definition (Context rules).

Clasgsical context rules. Let ¢ be "¢ 1 C",

<> L1l =R T,
<I>: {x : Al + x : A,
' ¢ - @
<K>: e ,
¢ x : Al o
¢ - 9
<K¥>: X S ,
¢ uw :: Y1 + w,

3.6 Remark.

(1) The last rule <K¥%> has been added only in order to accomodate
the ao hoc notations ¢ u 1 UL,

(2> The analogues of the so-called Contraction and Exchangs (or
Farmutation rules — occurring in Gentzen [L—systems - are
somewhat pointless in the present setting. Indeed, the usual
Contraction rule :

AW ¢ e ,

[231] ' [ 231




3 - First-order proof-theory

say, becomes a mere rotational diversion, since ¢ is a set and

¢l x : Al =¢ U {[x: Al » = ¢ U {[x : Al » U {[x : Al ) =
= ¢ x: A IL x: A1, The same is true about the Exchargs
rule,

(3> Context redundancy. The "context-redundancy elimination”
rule

<Keb>: 0 e s, x not free in ¢,

can be shown to be admissible 1in systems without such rules
("admissible” is taken, muwtatis mutamndis, in the Laorenzen-—
Curry sense, cf. [Lorenzen 19551, [Curry 19631); see also
[Rezus 19831). In order to accomodate the ¢ u :: U l-notation,
one could have had, analogously:

<K¥et>: 00 e s (a not free in o>,

3.7 Remark ((Context substitution rules).

Substitution rules analogous to some Automath context-rules
(LRezus 1983, 19861, [Barendregt & Rezus 19831) can be easily
shown to be admissible. E=xamples:

¢{ a ; A
¢f x : A 1] - bix3 : B
<$>: et (x fresh for ¢,¢=2),

¢, -t 0 U # "t is a Wterm")
=L u :1: U1 F bIul : Aful
£$y2: o e (u fresh for ¢.,¢2),
Ty¢2 - bIfu:=t] : Afu:=t]

or, more generally,

¢y, I € 0 U (2 "t is a Uterm")
C=ful + bful : A
€$y?: e ———————— {u fresh for ¢.’.
Ty (Cafu:=t]) + bIfui=t] : Afu:=t]

Stratification Iin the proof-calcuwlus of first-order classical logic.
We introduce the stratification structure for a typed Ai-calculus
Agt. AYY is a proof-calculus for the first-order classical logic

CQ, formulated in the provability language ([3,¥] and can be viewed
as an extension of the usual (extensional) typed A-calculus A. The
"t"-less label AY identifies the propositional (quantifier—free)
segment of the proof-calculus.

{241 £241]




3 First-order proof-theory

Ve display next only the derivation/proof rules meant to define a
stratification (" typing’) of p-terms. These rules consist of the
former context rules, together with a set of type-assigrnment rules.
They define a concept of proof for CQ, via a type—assigrnment =LCQl.
Essentially, n[CQl} is thus a "stratified” or a "typed” language,
where the types are the "propositions” of CQ. In extension, it

can be viewed as a set of t-statements, 1. e., "typing"” statements
of the form ¢ + a : A (read "a proves A in context ¢").

Proof-equality (or proof-canversiom for CQ relative to =ECQl
is introduced effectively later, by means of the typed A-calculus
Agt, 1. e., via a specific notion of reduction rxICQl>. As in
il the case of the ordinary (even '"type-free") A-calculus, the latter
;J concept is described as a (binary) relation, defined explicitly

on the "legal"” ("stratifiable”, "correct”, ''typable”, etc.’ terms
m of niCQl. So, as usual, equality/conversion in AY! is generated

by reduction rules.

3.8 Definition.

et et

The derivation rules of the proof-system =lCQl are:
1 Context rules: <>, <I>, <K>, <K¥> (see above).
2 Type—assignment rules (classical type-assignment) .

2.1 Basic type-assigrment.

¢f x : Al + afflxl : B ¢l x : A— 1 + allx] 1
(:il) T e s e e e e e » (:i a{) P T e e T e T Py
¢ - 2x:A.affx] : Ao B ¢ - dx:A".affxl : A
¢, -f : A B
¢ a : A
o (x=y: e s
¢'| ¢2 - fa : B
!
Lj 2.2 First-order type-assignment., If u is not free in f [ (¥Ye)l,
¢y  t U,
¢ u :: Y1 F aful : Aful ¢ + f ¢ ¥Yu.Aful,
(Fl): ———mmm e e e e , (Ye): —————m—————— .
¢ + tu.affull : ¥u.Alul ¢,¢ F fLE): Affu:=t].

{25] [ 251




3 First—order proof-theory
3.9 Remark.

It is appropriate to state explicitly the restrictions on
the wuse of variables appearing in the rules above. Note
that the provisves on contexts in proper context rules have
been stated separately. Frovisoes on contexts. Concerning
the statement of rules that are not proper context rules:
the notation agrees with Convention ¢.us above. That is:

the assumption on context extensions of the form ¢f x : C 1
(resp. ¢ u :: U 1> is - in such rules — that [ x : C 1
(resp. [ u :: ¢ 1> does not accur in ¢. In detail, this
should give:

in (oidi: { x Al is not in ¢,
in (i [ x: A1 is not in ¢,
An (M1 {f u:: 41 is not in ¢.

3.10 Remark.
One can eliminate both §! and T from =IiCQ1, by setting:
T:=(04 211 and § := Ax:l.x.
Then rule <fI> is obtained from <I> and an instance of (2iX):

<I>: { Itx ¢ L1 +x : L
(21N e e e

{ Note. This strategy does not preserve the reduction/equational
behavior of classical proofs.]

3.11 Remark.

The usual logic text-bock terminology identifies (DiX) as
"o-introduction” [or yet, in a different setting, as a
"deduction metatheorem'], whereas (e’ is also known as
"o~elimination” [as modus ponens or as “detachment rule”l.
Further, (¥1> and (¥e) are known as "¥-introduction” and
"Y-elimination” resp. [or as "universal generalization”" and
"instantiation” resp.1. (2iX), (2e) are part of the syntax
of the usual typed A-calculus (Curry’'s basic functionality
theary). Rule (i) is new and formalizes the so called
reductio ad absurdum or the principle of indirect reasoning.

Proof-term “correctness”! " type—checking’. Recall that, in the
above, ®I{Cl is the purely "propositional” fragment of wlCQl.

As expected, the "type-checking" of a proof-term, i. e., the attempt
to establish the "correctness" of its typing relative to =nlCQl, should
correspond actually to "logic theorem proving”, in traditional proof-
theoretic terms.

(261 L 261



3 First-order proof-—theory

Ve discuss next the theoretical basis of "type-checking” for the
first-aorder classical proof-system =x[CQl. Mentioned first are a
few elementary properties of "correct” proof-terms, i. e., those
proof-terms that respect the type—assignment rules of =lCQl.

3.12 Botation.

Let "¢ + a" be shorthand for "¢ + a : A, for some type A".
Mote, The intuitive [intendedl reading of "¢ F a” is "a is a
correct proof in =[C(Q)1". This notion is relative to the
underlying provability language (here: L[, (¥)]1 resp.).

One can easily prove the following facts, by inspecting the form of
the proof-terms appearing in the conclusion of the type-assignment
rules of aftCQY1.

3.13 Lemma (Behavior of abstractions wunder typing).

(1> ¢ + xx:A.allx] ==> ¢ + Ax:A.allx] : (A o0 B), for some B,
2 ¢ F ¢x:C.affxl] ==> C = A~, for some A, with ¢  gx:A".aflx] : A,
(3> ¢ + tu.alful ==> ¢ - tu.afful : ¥u.Aful, for some Aful,

(with u free in Afuld.

Froof. By a direct inspection of the typing rules. [

; ;
: i

3.14 Lemma (Behavior of application/instantiation urider typing.

(1> ¢ +fa==>¢ +-f : AnB, ¢ +a: A, for same A, B such that
¢ + fa : B,
=> ¢ F fitl : Afu:i=t], for some Aful
(u free in Afull and t free for u in Afu:=th
and some term t, with ¢ I+ t :: U

2 ¢ b fl+1

Froof. By a straightforward inspection of the typing rules. {1
3.15 Theorem (" Sublerm correctness").

1Y) ¢ - fc : A ==>¢ +f : C oA and ¢ +c : C, for some C,

2 ¢ + dx:A.allx] : (A o BY ==> ¢[x:Al  afxl : B,

3) ¢ + gx:A .allxl : A ==> ¢lx:A") + allxl : L,

4) ¢ + fitl : Afui=t] ==> ¢ + £ : ¥v.Aflv:i=ul, ¢+ t :: U,
where t is free for u in Afull and v is fresh for ¢ and not
free in Affu:=t}, and £,

, B5) ¢ F tu.aful : ¥u.Aful ==> ¢fluw: N + afful : Aful, where v is

e fresh for ¢.

Froof. In each case, by induction on the [length ofl derivation
of the premiss, using the preceeding Lemmas. [

3.16 Carollary.

Let a, b be proof-terms such that b is a subterm of a. If
¢ - a then ¢' + b, for some ¢'.

(271 £271




|
i)
¥

T R kL S T TR T DR Ly T R T BT ]

3 Firgt-order proof—-theory

Proof. By induction on the subterm structure of a, using 3.15.
LA minimal such ¢' can be determined explicitly.l [

3.17 Remark.

The Subterm Correcitness Theorem and its corollary guarantee
formally the existence of an appropriate type-checking algorithm
for first-order classical logic proofs. [EB: For g-free typed-
languages, this is widely known from the Autaomath literature,

as well as from waork on so-called "polymorphic’ typed functional
programming languages, as, e. g., the Hindley-Milner-Cardelli
Ml-series. It has become popular to contrast "Church vs Curry”
in this respect, although both points of view use the sane
"type-checking” strategies.]

3.18 Theaorem (Umicitly of types: [UT1),
If ¢ +~a : Ay and ¢ - a : Az then A, = A-.

Proof., Induction on the (subterm) structure of a, using the Subterm
Correctness Theorem [0

Motation., So, we can write unambiguously, type(¢,a> for A, whenever
¢ - a : A, whence ¢ + a : type(s¥,a). In particular, if ¢ is empty or
can be retrieved from the immediate environment, we set typela’ = A.

P Type-checking': heurigtics, Ve illustrate next a practical "type-—
checking'” technique, based on traditional proof-methods (S. Jadkowski,
F. B. Fitch, N. G. de Bruijn). Roughly speaking, the meaning of the
procedure is that, once a proof-term is given, the fact that it is/
represents, indeed, a classical proof - in the technical sense of
xECQl - can be also recognized by automatic means. The Jadkowski/
Fitch/de Bruijn technique consists of visualizing proof-structures
via *"nested blocks”.

The closed proof-terms stratified by the typing rules of =fCQl are
called PFoalsan combinators. In order to see how the language works,
some axamples are useful.

3.19 Remark.

The "type—checking” of (first-order) Boolean proof-terms admits
of a "reversal” ("Beth search"”), refining the familiar Beih
tablaawsx method {(aor, alternatively, the so-called "dialogic”
approach, cf. [Lorenzen & Lorenz 19781) into an algorithmic
technigue. The latter method aims at fimding a proof-term,

for a given type/proposition.

As ever, in what follows, type-parametrizations are shown explicitly.
Since, for §-free languages, the method should be familiar from the

ordinary typed XA-calculus, we display, in detail, only "genuilnely
classical"” closed proof-terms. More examples will cccur subsequently.

[281 [281




|
i

|
it

First-order proof-theory

3.20 Examples (Boclean proof-combinators).

X

£ 29]

(1°) The tukasiewicz axiom for material implication. Consider
the types/proposition (Lukasiewicz 19481: e

£ ABzocCo .C=2 A (Do A,

This is also known to be the shortest axiom for the "pure
material implication” (in axiomatizations with [Delo, 1. e.,
modus ponens, as sole derivation rule). Define:

£fA,B,C, DI := Xx.Ay.2xz. fu. ulyxQw. g, uwr )
with [x : Ao BoClly : C o Allz : Difu : A-1llw : AMMt : B-1,

where the types of bound p-variables occurring within the
scope of a A- or a J-abstractor have been extracted under a
local with-declaration. One can check:

£ 1 + £[A,B,C,D} : Ao Ba3C =3 .Co3A 2 (i,

The standard "type-checking” of this proof-term is a natwral
deduction proof of (&£, using only modus ponens, the deduction
theorem and reductio ad absurdum (the rules of =xiCl)>. The
so-called "Fitch-style" ['"nested-blocks"l presentation of the
proof [Fitch 19521 is an elliptic form of the type-checking.

L2l



3 First—-order proaf-theory

Aw, §t.uw : A
x{(Aw. §t, uw? : C
A

L

i
i
i
wd

vz Qw. gt uwd))
uly(xQw. gt.uw 2

e s e mm AE am mE am W= e ®w e ww

% gu. ulyEOQw, gt.uwd>> A ‘
AZ. fu.uly k. dbownd) ¢ DoA ;
| AY.Az. fu.uly Q. db.ww)d> ¢ CaAm.DoA :
AK.AY. AZ. f0. uly Gk . g6, uw))) ¢ AZBoCa. (CoAYo (DA |

One should realize that the proof-term £f[A,B,C,DJ delivers
complete information as to the way of recovering the full
display.

Ciamrisl

~ Note. This display "style” is an intuitive visualization of
[ a technique due, independently, to S. Jaskowski (19226), F. B.
- Fitch (girca 1950) and N. G. de Bruijn (1967-1968). In the
latter case, it reflects also a specific method of codifying
mathematical proof-texts, in view of computer—assisted proof-
checking as used in Automath (see, e.g., [Rezus 12831, for
background and further details).

G A f-free variant of the "nested blocks" method has been also
implemented in a specific Automath language; cf. [Jutting 19791
and [de Bruijn 19801, for instance. N. G. de Bruijn [19871 has
proposed a pure combinatorial representation of the "nested
blocks" structuring, in terms of labelled trees, best suited
far the auwtomatic processing of proof-opesrations.

RERERNERRENE

£301 £ 301




3 First-order proof-theory

(2°) Peirce’s Law. The following type/proposition, known also
as FPeirce’s Law (C. 8. Peirce 1885),

P> { Felrcal A o B oA A,

has a "proof” P_I[A,BY] := Ax. dy.y(x{Az. fu.yz?)), with [x:A0BoAl
[Ly:A~1Lz:Al[u:B~]1 and the following standard "type-—checking"
[printed, more economically, asl:

x(z. fu.yz)
x(Az. fu.y2)?
yx(Az. fu.yz)) :
Y.y {x(kz. fu.yz)) :
Ax. #y. y(x(Az, fu.yz) :

[x1 A>DBsS A
1Lyl : AT
L Lzl
. i [ul -
o v yz :
i ‘ { du.yz :
@ : d Az, fu.yz :
t ]

Lol o Rl vl ol
u
ve}

P
1)
b
U
>
U
>

(3°) Ex falso guodlibet. The Af—term wlAl := Ax:il.dy:A™.x
"proves!" the Heyting-specific proposition (beyond Johansson’'s
[1936]1 Minimalkalkdld) W) [ex falso gquodlibetl: L o A

! [ x1 B |
? ¢ Iy : AT
: Pox I |
¢ dy.x : A

Ax. dy.x : L o A

4°) Duplex negatio affirmat. With AfAY := Xf:A=. ¥x:A~.fx,
for all types/propositions A, one has [ 1 + AfAl] : A™ DO A.
Contrast this with I[A] and 1fA,B] (where I[Al := Ax:A.x
with 1 F ITA] : A - A and 1[A,B] := Af: (ASB).Xx:A,.fx, with
£ 1 + 1fA,B1 : A B o .A B,

3.21 Remark.

So wlCl, the "basic" fragment of wlCQl contains actually the
full classical propositional logic C, in the language L[{D3].
Indeed, T [as a CQ-theorem, taken care by (21, together with
(£, W) and [Delo are also known to suffice for a complete
i axiomatization of C in L{31. However, =I[Cl ’contains” more
than mere "provability”, it codifies the proofs themselves.

The lists af proof-combinators displayed next have a technical use
later. For the moment being, they can be taken as examples or as
training material [exercises]l in type-checking closed proof-terms.

Bovlean proof-combinators. The classical proof-system =l CQl admits
of a finitary formulation in terms of proof-combinators.

BESDVRESRRIT

£311 ' £311

SRCLRt O '




+ 3 First-order proof-theory

In traditional proof-theoretic parlance, this points out to specific
axiomatizabi lity reswlis. In combinatory (logic) terms, one has a
"theory of Meredith proofs” [Rezus 19821.

The rest of the section shows that the proof-system =xlCQl contains
the corresponding first-order logic CQ, with implicit reference
to appropriate axiomatics. The fact that it is not "more” will be
established later, via the combinatory formulation =l CQl.
3.22 Definition (Ground Boolean proof-combinators).

For all types/propositions A, B, C,

(LY (Pagic Boolean combinators)

ITAZ = Ax:A.x,

KfaA, Bl = Ax:tA.Ay:B. x,

SfA,B,C3 = Ax: (A3, BoC)Y . Ay: (A=B) . Az A . xz (y2),
ATAT = AX: A=, §y: A~ xy,

2> Firgt—order EBoolean combinators)

EuEAT = Ax:A. fu.x, [u not in FV,CADD,

Sui4, B} = Ax: (¥u. (ASBY) . Ay (Yu  A) L tuuxtul (ylul),

8uIA,BI = AX: (Ao¥u. BY. 'ua. Ay: A, (xy2[ul, {u not in FVL(AD],
CLIAZ = Ax: (Yu.¥v. A, tv, tu. xlullvwl.

3.23 Remark.

(1> In the preceeding list, some ground Boolean combinators can
be obtained from other ones, also present in the list, by
explicit definitions. A typical case in point is I{AJ.

(2> The follaowing proof-combinators can be also defined in terms of
ground Boolean proof-combinators (for all types/propositions
A, B, C) and ternms +:

KiTATZ = Ax: 7.2y 4A. 8,

K'fA,B = Ax:A.Ay:B.y,

BIA,B,C3 = Ax: (ASB) . Ay: (C=A) . 2z:C.x(yz),

B’EA,B,CH := Ax: (AsB) . Ay: (BzC).Az:A.y(x=),

CIA,B,CTH = Ax: (AS.B=CY . Ay B. Az A, xzy,

Cs.TA,BZ = Ax:A.dy: (ASBY . y=x,

WIA,B] = Ax: (A, ADBY . Ay A xyy,

BuIA,B3 = 2Ax: (ASBY . Ay: (¥u. . A) . tu.x(ylul) [u not in FVL(A,BY1,
CulA,BI = Ax: (¥u, (A=BY)).Ay:rA.tu.xluly [u not in FVL(ADD,
B.ufAT = Yy, A% ¥v. AfvIly.xlul, [u not in FVGC(AEviRD,
B.FAT = Ax: (¥u, ATull).xt £}, [u free for t in ATull.

{321 321




3.24
(@)

=D

3>

()

(I
(K>
(€5))
(A)

K
(Sw
(®u2
14 0
2>

(K2
K*'>

B>
()]

B
(Cx?
()
W

(B
Cw

3

(B

{331

First-order proof-theory
Notation.
For all types A, v[A] := GCulA,1l] [= AxtA. Ay:A—.yx 1.

For all types A, B, C, any context ¢, and proof-terms a, b
such that ¢ +a : A B, ¢ b : C =5 A, set, in context ¢,

a t b := Az:C.a(bz),
provided z is not in FVa(a) U FV.(b).

For all types A, B, any context ¢, and proof-terms a, b such
that ¢ - a : A 5 Band ¢ + b : ¥u.A, set, in context ¢,

a tu b = tu,a(bluly,
provided u is not in FVa(ad U FV,(b) i FVy(AY U FVu(B).
Fact (" Tvpe~checking® Boolean proof-combinators).

For all types A, B, C, one has, in the empty context,

~ ILAZ : A o A,

~ K[A,BI : Ao .B o A,

F SfA,B,CT : A > (B2oC) o .A>Ba (AxzQ,

~ AfAL i Ao A= Ao}l o1 o Al,

F KofATZ i A 3 ¥u. A fu not in FVodAl1l,

- Sulid,Bl ¢ Yu. (A 3B o .¥u.A = ¥u. B,

~ ¢, IAT P Yu.¥v.A o ¥v.¥u.A,

+ 8ufA, Bl : A 3 %¥u.B o ¥u. (A o B> [u not in FVo(Adl.

Similarly, for all types A, B, C, in the empty context,

- KolAZ T . AT,

= K'[A, Bl A 3 .B o B,

+ BIA,B,C] A B >o.Coc A= (C = By,

+ CI[A,B,C1 A (B=SC)o.Bo (AC,

F B'fA,B,C] : ADB 3 .BoCoo (A C>,

+ Cxf[A,B] A - .A>-B2>2B,

= wlAl ASAL[ =2 A  Aoclzol1l,

= WIA,BJ (A o .A 3B o .A 3 B.

- BulA, Bl : A DB oo .¥u.A o %u.B [u not in FVu(A,BY1.
l._

CulA, BT i ¥u. (A o Bful) = A 3 ¥u.Bful [u not in FV. (A>T,
For all types Afull, if v is not free in Aful,

[ 1 F 8xufAl @ ¥u. (¥v., Afu:=v] S ALul>.

[ 331



4>

B
14: M)

S

o)

First-order proof-theory

For all types Aful, any context ¢, and all Wterms t such
that u is free for t in Aful, and v is not free in Aful},

¢t :: U==> ¢ - B8.IA7 : ¥v.Alv] o Afu:=t3, whence also
¢t :: 4 ¢t f @ ¥v.A[v] ==> ¢ - B .JAR(EY : Afu:=t].
For all types A, B, C and any context ¢,

¢ -a: ADB, ¢+b: C2A

———————————————————————————— fu not in FVu(A, B)1,

Froof. LExercisel. O

{341

£ 341



4 ' Proof-completeness

4. Completensss relative to classical provabi lity., We can now
establish the fact that both points of view of provaby lity: the
combinatory formalism me{CQl and the A§-formalism xECQl are
equivalent. Moreover, both formalisms are complete relative to
the classical concept of first-order provabi lity.

Let next Term(xICQl) be the set aof Afl-proof-terms and Term{m.L[CQl1>
be the set of combinatory proof-terms.

We assume, for convenience, that the set Vara. of p—variables of
i CQl and the set Vare of p-variables of mLCQ} coincide and that
L CQl and m[CQ]l have the same sets of terms.

Also, for any primitive Boolean proof-combinator X in nefCQY (viz.,

0 iIAL, EI[A,Bl, S[A,B,CH, ALA3, KoI[AB, SolA,BI, 8uLA,B] or 2,IAD),
let X* be the corresponding Af!-proof-term, as above. E. g, 1f %
is IfAl, then IfAJ* is the p-term IfAJ = Ax:A.x.

What follows is similar to (a part of) the standard equivalence

(type-free) argument: combinatory logic <==> Afn-calculus (cf.,

mutatis matandis, for instance, [Stenlund 19721, [Rezus 19811 or
[Hindley & Seldin 19861).

4.1 Definition.
ey (1) Let (...0% : Term(miCQl) —-> Term(m[CQl) be a map defined by:

%, 1f x is a p-variable

rrrrrrrr 'Y (X)c =
& * (fI e = g,
* (fere= = (£f)<(co <,
» * (AX:A. D)< = dxxi A, (b)Y,
o) . IXTA PSS = FuxiA. (DXC [ =g ATAT Qx:A. (B)S) 1,
. (fi 1)< = (f>=l €1,
. (tu.an < = xu. (a2,
(2) Let (..0% : Term(nmeICQl) —-> Term(nLCQl) be a map defined by:
. (x> = %, if x is a p-variable,
0 . (- = 0,
* (X = A*, for any primitive proof-combinatar %,
. (. XOv = tu. (X0, for any ground proof-combinator !..X,
. XY+ = (O,
* XL £1>+- = (X[ €1.
4.2 Lemma
(1) For any primitive proof-combinator % in meLCQl, [ 1 + ™M e = X,

(2> For any ground proof-combinator X in m[CQ1l, [ 1 F (X-)< = X,
fviz., (X“)€ is also a ground proof-combinatorl.

Froof. (1) We need only check the individual cases:

£ 351 L 351




]
{

1

§
o

4 Proof-completeness

[ 1+ (IEAd>c (Ax: A XS = DaxtA.x = ITAT,

i

[ 1 + (KEA,BDE Qe AVAY: B xS =B Jaext A day:B.ox 2 KEA,B].
y v

(Ax: (Ao, BzSO) LAy (AoB) . 2z A.xz(yz))© =

AaX: CAD(BCY) Ay CADB) Azt A xziyz) =

ZI4,B,C1>.

{ 1 + (Sf{A,B,CDHOE

HIH I

I

If u is not in FVu(A):

{1 + (KoEIADDSE

i

XA 1w )9 B Xt Al tau.x E KOofAdL
[ 1 b+ (SUEIA,BIDC Ax: (a, (ASBY)Y LAy (Wu 8 tu o xful (yluwldd =
Aacx: (Fu, (ADBY Y. Ay (Yu A typuaxlul (ylul)d) =
SulA, BI.

Nt

If u is naot in FV,(A):

[ 1 + (@, lA,BI)S Ax: (Ao¥u.B). tu. Ay A, (xydluld<
2t (AD¥u. BY) . taeu . 2yt A (xyd Ll
BolA, BY.

oo
([

£ 1 F @A Ox: (Fu. ¥v. A v o tu.xlulivlde
AaX: (Fu. . ¥v. A T ev o tu o xlul vl

Z£GIAT.

i

I

(2> If X is a ground Boolean combinator then X = !«.Yful, where
YIul is either a primitive {(ground) proof-combinator or a ground
proof-combinator of the form !'..ZIu,vyl, for some Zf{u,v]. The result
follows from (1> by induction on the length of the !-prefix of X. 0

4.3 Theorem,

For any {(stratified) combinatory proof-term ¥ in m[CQl, such
that ¢ +. X : A, for some context ¢ and some typesproposition
A, one has ¢ . (X-)<= = X,

Froof. By induction on the structure of X. Clearly, by definition,
(xt->€ = () = x, for any p-variable. By definitiom, 4%-2€ = .

By 4.2 (1) above, if X is a primitive Boolean combinator %, then

[ 1 F (39 = (3»ce = %, since, by the definition of (...

LS
¥

)
has %+ = ¥, If !.,.X is a ground Boolean combinator then so is X

and ((XO)“-)<, whence

(UL XOWe s (ty, (OW)E

]

1o, (WS Eg,e 1y, (D92 = 1,0,
by 4.2 (2.
The (IH) yields the remaining cases:

(Y=o < E (DM = (9IS (9=,

i

(XLtlIi>=0c = (DL E1H© (o<t 1. O

[361 [ 361



"l
!
1
j
A

IS 2
it ¥

i
£l
g

4 Proof-completeness
4.4 Theorem (Combinatory Embeddirng for =LCQ1).

For all typess/propositions A in LI{3,¥1, all proof-terms a in
Term(xLCQ1), and all contexts ¢,

¢ Fa: A==> ¢ (a2° : A,
Froof. By induction on the {length ofl]l derivation of the premiss. [
4.9 Theorem (\y! ~Embecding for =xlCQl).

For all types/propositions A in L[3,¥], all combinatory proof-
"terms X in melCQl, and all contexts ¢,

¢+ X ¢ A == ¢ - O- @ A,
Froof. By inductiaon on the {length of]l derivation of the premiss. [
Finally, this yields the following (expected) completeness result.
4.6 Theorem (Froof-~completensss).

For all types/propositions A in L{2,¥%¥], the following meta-
statements are equivalent:

(1> CQ i+ A f= A is provable in first-order classical logicl.
(2> =X : A, in n.[CQ), for some Boolean proof-combinator X.
3> {1 Fa: A in mlCQl, for some (closed) p-term a.
Froof, (1) <==> (2) is straightforward, provided one realizes the
fact that n.{CQ} is nothing but an explicit standard axiomatization
of CQ. (2) ==> (3) follows from the Combinatory Embedding Theorem

above, with a = (X>-., The converse implication (3) ==> (2) follows
by the A§!~Embectding Theorem above, with X = (a><. [0

£371 £371



5 The proof-calculus Ajg!

5. A proof-calculus for first—order classical lagic. Ve introduce
next a concept of proof-eguality (or proof-conversiom for CQ
relative to the concept of proof (formalized in) ={CQl, by means
of a typed A-calculus Ay!, that is, via a specific notion of
reduction r(xiCQl>. The latter one is a formal counterpart of the
intuitive notion of a proof-détour slimination in CQ.

The détour eliminations are analyzed explicitly by (1) evalwation
rules, (2% reductio rules and (3) compatibility rules.

The first group (1) contains rules that are similar to the usual
reduction ["evaluation”l rules of the typed A-calculus: in fact,
they are identical to the proof-rules needed to formalize the
{o,¥1-fragment of the Heyting calculus.

The reductio rules of group (2) characterize the "classical” notion
of proof-reduction. They are, essentially, meant to estimate the
complexity of proofs by reductio ad absurdum in classical logic.

Finally, the compatibility rules (3) are technical (but trivial)
in nature and are intended - as usual in A-calculi - to insure the
fact that the equality relation generated by the reduction rules is
a congruence relative to the syntactic operations of the language.

In particular, AJ! appears to be a typed X-calcuwlus, namely it can
be viewed as a proper (and conservative) extension of the ordinary
typed A-calculus A, If = is the equality generated by the reduction
relation of XJ!, the proof-thecry (A{!, =) is a Post-consistent
extension of A, [1i. e., using the standard A-calculus terminology,
A¥! is a typed A-theoryl, whose types are the "propositions” of the
first-order classical logic CQ.

At a later stage, the "reductio' rules are shown to be - roughly
speaking — equivalent to a systematic abbreviation device. This
motivates the restriction to "type-normal” proof-theories, i. e.,
to proof-calculi where reductio ad absurdum is only applied to
atomic types. -

5.1 Hote.

(1> The standard notion of reduction of A¥! is denoted by =2,
whereas the equality generated by =» is denoted by =. If
necessary, the non—-transitive counterpart of =» (proof-—
contraction ) is denoted by -».

(2) Vith & ("and”) in metalanguage, we write ¢ - a =» b : A for
(¢ Fa: A)& (¢ H+-Db: A)> &C¢t+-a=>5ov>
The parenthesized notation ¢ - a =» b [: Al means that the

information appearing in brackets is redundant (viz., the
actual form of A can be restored by type-assignment rules).

[ 381 £381




5 The proof-calculus X!

(3> FProof-contraction, proof-reduction and prosf-eguality/ conversion.
Froof-reduction [=»1 is reflexive and transitive as a relation
on proof-terms (relative to typing), while proof-contraction
[-2] 1s reflexive but not transitive. That is, formally:

¢y +a =2>>b: A

¢ +a : A ¢ +-a : A ¢ b =2c : A
pr: ————mm y T y Ty —mmmmmm e e '
¢ Fa-2al: Al ¢ +a =» a [: Al ¢,¢- b a = ¢ [: Al.

Further, (1) excepted, -» is assumed to satisfy the same rules
as =». This means that, with -» in the primitive setting, one
could have introduced =», by stating only -»-rules of the form
below, together with, as specific assumptions on =», (1) and
the following "-»,=»-containment” rule:

=2: e .

it Analogously, proof-equality or proof-conversion = [that is:
the equivalence generated by -»1 satisfies the same rules as
8 ~?, together with (1) and

- ¢ R — ,

whence, with -» [resp. -» and =»! in the primitive setting,

fl one could have introduced =, by stating only -»-rules [resp.
i —2>-rules and the specific =2-rules r), (-»1, of the form
above, together with, as specific assumptions on =, (g, ),

iy and a "—-»,=—containment” rule of the form:
=) e ’

[resp. the obvious "=»,=-containment" rulel.
The derivation rules of the classical proof-calculus 132 are:
5.2 Definition. (First-order classical proof-rules).

1 Evaluation rules.

1.1 Bagic evaluation.

¢, a: A
¢l x : Al - DbIx3 : B
B2 e ————————— ,
¢;¢- + Ox:A . bIxI)a =» biIx:=a] [: Bl

[391 [ 391




5 The proof-calculus X!
a3 e s X not free in £,
¢ b+ AxiA.fx =>» f
1.2 Firgt-order evaluation.
¢1 =t & U

=l u :: WY1 + aful : Aful
BYr: e —————

¢ BT e » (u not free in £,
i ¢ + tu.flul =» £,

2 Reductio rules.

L1 Basic type-reduction.

o WBI: e .
- ¢+ ¥x:T.blIxT3 =» 0 0: TI
2 ¢l x : L= 1 F bIxl : L
@B e e ,
7 ¢  ¥x:1-.blIx] =2 bix:=xz: 1.2z [: 11
: ¢y Fa : A
» ¢=l x : (ADB)— 1 + bfxl] : 1L
i B ) s e ;

W ¢3¢ - (fx: (AoB)~.blIxIda =» #x:B-.b'[x] [: Bl

where b'I[x] = bix:=2z: (ADB) . x(za) .

% R
b
Rt

2.2 First-order type-reduction. If u is not free in bIx1,

»% ¢, =t U
i ¢=l x : (¥u.Aful>— 1 + bIxl : L
B ) e
¢1¢2 H (¥x: Wu  Aful)—.bIxIIt] =9 gx:Afu:=tJ.b'Ix] [: A'l
where b' [xl = bix:=Xz: (¥u.Alul).x<z(t]1>]
¢ {and A’ = Affu:=tJ1.
O 2.3 Extensionality.
¢ - f A
=gy e y (x not free in £,

[401 {401




o S The proof-calculus Ajg!
3 Compatibility rules.

2.1 Pasic compatibility.

¢, - f =2 g : A= B
¢2 a : A
(pz2: e s
¢, Fa=2b: A
¢ - f : Ao B
\ W= T )
¢ x : A1 F afx] =» bIx] B
M &2y T e R
- ¢ F ax:A. alx] =» Ax:A.bIx] [A o Bl
o ¢L x A- 1 + afxl =» bixl L
'{ toH: e e ————— s

¢ + FxiAm . aflxl = Ex:A-.bfx] [: A}.

2.2 Firgt-order compatibility. If u is not free in £, g [ (u¥)1,
''''' ¢y -t i: U

— ¢z + f =>» g : ¥u.Aful

! () s e ,

¢:¢2 - fLE] =3 glt]l [: Affu:=t]]

¢ u :: Y1 F afful =» bIul : Aful
ey e .
¢ + 'u.affull =2 'u.bful [: ¥u.Al.

5.3 Remark.

It is appropriate to state explicitly the restrictions on
the use of variables appearimg in the rules above.

(1 FProvisoes on contexts. Concerning the statement of rules that
are not proper context rules: the notation agrees here with
Convention ¢.u> above. That is to say: the assumption on

contexts of the form ¢l x : C 1 (resp. ¢f[ u :: ¥ 1) is that
[l x: C1l (resp. [ u:: ¥1) does not occur in ¢. In detail:
o in (3 { x: Al is not in ¢,

in o f x : Al is not in ¢,

in (&¥): L u:: ¢¥1 is not in ¢,

in (B2A): [ x: A1 is not in ¢,, ¢,

in (BY¥): { uw:: Y1 is not in ¢,, ¢=,

in (BET: [ x T 1 is not in ¢,

in (BEbl): [ x i~ 1 is not in ¢,

in (Bg: [ x (A 2B 1 is not in ¢,, ¢=,

in (B [ x (¥u. Aful>— 1 is not in ¢,, <¢=.

£411 (41l




5 The proof-calculus X!

(2} Provisoes on proof-terms. For extensional [#-]1 rules involving
abstractors, one has, as usually in typed A-calculi:

in (a3, Godd: x is not free in f,
in (ny): u is not free in f.

5.4 Remark.

To our knowledge, the reduction rules for classical first-order
logic have never been stated correctly in the literature.

See, however, the recent work of Glen Helman [ 1983, 19871 for
good intuitions into the equational behavior of CQ-proofs.

Uil 257

(e

St liouiania®s

1421 [42]

)




sy
i
3
i
L
od

i
i
W

6 ; Proof-consistency

&. Clasgical proof-consistency. We use next a simple extension of
the ordinary "type-free” A-calculus in order to give a Jirect proof
af consistency for AY!. "Direct"” means that no specific properties

of reductions (as, e. g., confluence) will be actually used in the
consistency proof.

In other words, we show Consl*TA!l, for a "fictious" extension *TA!
of the ordinary extensional ("type—free'") A-calculus, called, for
typographical convenience, A here (the latter appears also as
ABnK or as A{a) in the literature [Barendregt 19841).

The "fictious" Xl-calculus *TA! is, in a sence, not "more” than TA.
This insures, by a simple translation, the non-triviallity of proof-
equality fLor "proof-conversion) in first-order classical logic
€Q. So, the proof-consistency of classical logic 1is obtained by
a pure type—free Mcalculws technigus.

For reference in technical definitions, the typé-fres - term—

gyntarx (©f TX) is given, inductively, by [primitive notation in
bracketsl:

iy, Ya, Ta, oo general-variables,
(fad [= @fa ] functional applications,
(Ax.ad [ Jxa ] A-abstractions,

(where f, a are A—terms), with the usual conversion rules (B>, &G,

In order to obtain the "fictious" extension *A!, we add to this a
set of variables, distinct from those in Var, and term—forms:

(fL£1> L
(tu.a>

Bft ] U-applications,
tua 1 U-abstractions.

i

Beyond the familiar rules (8> [= (L1, ) [E K] of T, *A!
has als=o some trivial analogues (B!), !) of these. For e in an
appropriate imdex set, we simulate, in terms of fA!, additional
term-forms

(dax.a) [ 2 faxa 1 i—abstractions.

Finally, *A! is shown to be consistent as an equational theory
and Af! is interpreted trivially in TA!,

£431 [ 431




5 ! Proof-consistency

Type—free X{!-calcwli. Ve formalize next the abstract structure
of first-order classical proofs in a pure "type-free” A-calculus
setting.

6.1 Definition (Strwuecturse ndices).

Consider an alphabet ¥ consisting of the following symbols:

o012 ¢CH>t 1,

{That is: I contains three JAdigits 0, 1, 2, parentheses,
brackets, and a comnma.l

(1> The set of strwcture indices 1is a set of words over H U L,
generated by the following inductive conditions: for n € N,

. 1°Y (n,0), (n,1), (n,2) are structure indices,
i 2°) (n,lel) are structure indices, 1if so is e.

%

mtat
e

o, If e 2 (n,o0) then He = n is the height of e and
o is the grownd of e.

& =

H

o (2) A structure index e is said to be basic, if e does not contain
brackets.

6.2 Remark (Structure Indices as fictious types).

The structure indices reflect the abstract structure of
certain provability languages. Consider, e. g., the first-

" order language L := L[3,%¥1. L is constructed, from atomic

vl propositional constants T, L, atomic propositions Piu,,...,unl,
- by closing under a binary connective o ("material implication”)
and a first-order ('universal”) quantifier ¥. Then there is

a correspondence

[

L—formulas/propositions —F indices,

since any formula/proposition 4 in L is of the form:

1 A= (Ay 3 .(Az 5 ... . (A, 3 B)...> (2 0> [index (m,e)},
sy :?iinB index ?i°§ST { index (0,021
; or z2°) L { index (0,1)1
{ or (3°) a propositional atom P {index (0,271
ar of the form (4°) ¥u.C { index (n,lel)l,
with C formula/proposition [ index el.

Sa, the basic indices would correspond to quantifier—free
formulas/propositions of L.

3
1
¢
B

{441 £44]




6 Proof-consistency

6.3 Definition (Tvpe-free Xl-calcuwlus).

(1> The calculus *A! has, as syntactic categories:

(1°> A set U of U-terms. The U-terms are ranged over by t,
possibly with decorations. The set of U-terms is left
unspecified, except for the fact that U is supposed
to contain an infinite set Vary of U-variables. The
U-variables are thus U-terms.

(2°) A set TermlA!l of A!-terms, ranged over by a, b, o,
f, g h, ... and generated inductively by:

Wi, Vi, ... U-variables,

Xas Vas Zss o+ o g-variables [in a set Varal,
efa

(far [ = ] functional applications,
(Ax. ar { = Axa 1 A-abstractions,
(L €1 { = B8ft 1 U-applications,
(tu,ad L = tua ] U-abstractions,

where f, a are A!-terms and t is a U-term [ in the above, the
primitive notation appears in bracketsl].

6.4 Notation.

(1> In notation, economy on parentheses and brackets is made in

- the usual way (by associating to the left and by eliminating
: the cutermost pair)., This gives the shorthand fa,,... an. for
(.. {fas?...an)), as usual, but we can write flit,,..., tnl

as shorthand for (¢ .., (£fLt:31)0t=21)...0%,,10

(2> Following the customary practice, we write Axy;...xn.a for
AX3...AXn.a and, analogously, !'uis...un.a fOr !'u;...!'un.a.

(3 For Al!-terms a, c, and U-terms t, we write also alx:=cl and

e afu:=t3, resp. for the substitution operators on Al-terms,

[ These stand for formal operators that can be given a rigorous
inductive definition, which we want to skip.]

S

(4> For convenience, "t ..." stands for derivability in *A!.

- Swbterms of a Al-term are supposed to be introduced in the usual
o inductive way (such as to enable us to do induction on subterns,
for instance). By similar inductions, it is assumed that it is
clear what means to be bowrnd and free for the occurrences of a
g-variable resp. a U-variable in a A!-term. FVg(a) and BV, (a),
(resp. FVu(a) and BVu(a)), stand for the set of bound and free
g-variables (resp,. U-variables) of a term a. A A!-term is g~
resp. U-cloged 1f it does not contain free g— resp. U-variables.

?
4
o}

A closed A -term <(or a Al-combinator) is a A!-term a without
free variables (it is both g- and U-closed: FVg(a) = FVu(A) = @).

{451 {451




6 Proof-consistency

The "window brackets” [...] are part of the the meta—-language and
are used to display occurrences of free g— and/or U-variables in
a Al-term, or formal operations applied to such occurrences. As
ever, syntactic identity is denoted by =.

It is also assumed that the reader knows how to do systematic re-
letterings of bound g- and U-variables, i. e. that he is able to
identify/distinguish terms by a-conversion, i. e., by using the
(renaming? rules (for g- and U-variables):

ax) Ax.afx] =« Ay.alx:=yI, (y fresh for a’,

(A2 : tu.afful =2 !'v.afu:=vl, (v fresh for a’.
In the sequel, = stands for conversion (the "extensional equality">
in *A!. It is assumed to respect a-conversion, in the usual way
(i.e., Zo £ =, as set-inclusion between relations).

6.5 Definition (*Al-conversion rules).

o Conversion (or eguality) = in TA! is defined, as usually, by
o conversion rules:
e
(BA=>: (Ax.adc = aflx:=c3,
”i hA=: Ax. fx = £, (x not free in £,
= (B1=): u.adlt]l] = affu:=t1,
' (hl=): tu. flul = £, (u not free in £,
g 6.6 Remark.

V (1> Here, the Al!-terms occurring on the LHS of a conversion rule
,f are said to be o¢iours (or redexes); the corresponding RHS
_____ i counterpart make up thelr contracta. ODétour-classiFicatiom

rey B-d&tours (’intensional”): n—détours ("extensional"):

|
- L (Ax.adce CloAx. fx {x not free in f1 !
f v Qu.adl 1 b tu flual fu not free in f1 !

A dl—tern is rormal Cor in normal form if no subterm of
it is a détour.

(2> As expected, the equality of *A! is assumed to respect the
primitive syntactic operations of the calculus. This gives
several compatibility conditions, making = into a comgruence
on Terml *A!}., Formally, one must have also, for all A!-terms
f, g, a, b, all U-terms t:

(pl: a
(g2 a
(T a

{461 [46]




[

o] Proof-consistency

() : a =b E==> fa = £fb,
e f = g 9==> fa = ga,
DK f =g &==> £flt]l = £l t1,
LA a =b F==> Ax.a = Ax.b,
SR D ¥ a =b £==> tu.a = tu.b.

(3> If necessary, the stamndard reduction relation 3 of TA! is
defined by the same conditions as above, without (). One
can easily see that:

(=2, =>

a == 8 =
Cuar ) e £

3 b == b,
> 8 a = b e==> fa 3 gb.
6.7 Lemma.

Consl TA!1.

Froof. E1f, for some reason, the "purity of methods" is at premium,
this can be shown by using a confluwence (Church—Rosser) argumernt,
noting that the standard Talt/Martin-L3f » residuatior’” technigue
[LRezus 19811 applies directly to the case of concern. The required
analysis is only slightly more involved than that appearing in,

e. g., [Takahashi 1989]. We prefer the following, much shorter,
translation argument.l

Vhere Terml Al is the set of type-free A-terms of the ordinary
A-calculus *A, assume that the U-terms of *A! are constructed
from U-variables and function symbols in a set { frna.sa ¢ 1 € 1 1},

Fix a valuation #o of Vary into Var,, associating to every n—ary
function symbal fcn.3.,: of TA! an arbitrary closed A-term

fr,s 1T XXy v  En Ben.s 3l 00, X0l
Define a map * : Terml *A!] --> Terml A1, by

* = #(a) € Vara,

(f:n:,i[t]cootn])* = acn,1:EX1:=(t1)“,...,Xn:=(tn)*3,
() = x € Vara,

(ab)* = (ar*(br+,

Ox.ar* = ix. (a)*,

(alt1)* = (ar*™(t)=,

u.a)* = dx. (af#o(w):=x])™,

Then
(a)* = a, for all a € Terml A1,
and far all a, b € Terml TAt1l,

A F (abX* = (aX*(b)*,
TAF Qx.aX* = Ax, (ar™,

[47] {471




6 Proof-consistency
It is equally easy ta check the fact that

TA! Fa = b ==> TA b (a)* = (b)*,
for all Al-terms a, b, whence Consi*A!l. 0O
Type—~free reductio-functionals Iin *AY'. We introduce now a sequence
of M -combinators, used next in order to simulate the equational
behavior of A#! within *A!.
6.8 Remark.

(1> Mx-pure” combinators.) The following combinators are standard:

I := xx.x,

K = Ax.Ay. x, K*' := xx.xv.vy,

B = Ax.)y.Az.x{yz), B = Ax.Ay.dz.y{xz),
C = Ax.Ay. Az, xzy, Cx 1= AX.Ay.¥%,

S = Ax.Ay.Az. xz(yz).

2) (X-combinators.) There are obvious A!-—analogues of the abave.

K, = Ax. tu.x, K', := tu Ax.x,

By, := Ax.Ay.!u.x(ylul>, B', := Ax.Ay. tu.yxluly,

C = Ax.Ay. tu.xluly, 8, = Ax, tu.Ay. xy>[ul,

¢, = Ax. tu. tv,xlviiul, vy = tu.ax,.xtul,

S, = Ax. Ay, tu.xlul <ylul>, [£) := 7L t]l, for any U-term t.

So U-application fl{tl can be expressed by [+1(£).
6.9 Notation.
a b= Ax.a(bx? ffor x not free in a, bl.
€Ar, v 18BR? 1T AX.Xa1...845 Lfor ¥ not free in a+,...,8nl.
o= Axy.vyx [ = Ax. x> = Cx ] .
6.10 Remark.

(1> For x not free in a, b, + a ¢ b = Bab.
2) v = CI.

6.11 Definition (The next * type—freg' combinators).

$<J
$ca

Ah.Af.2x. hAy. £z, . y(zxd>)),
Ah.Af. 'u hQAy. £z, y<(zlul ),

6.12 Remark.

One has b+ $¢> = AhfX.h(Ay.f(yt(¥x))) and, by expansion, also
F $¢c> = CIBSBI(CIB:BIL (CB)2¥1)., [ Exercise: Find expansions for
the other mext-combinator $¢3, in terms of B, C, I and basic

At~combinators. Note that no S and XK are needed. In other words,

the next-combinators are 'strictly linear” or "BCI-linear’.l

£48] [48]



)
§
4
+

6.13 Definition.

Froof-consistency

dca.o> = AXy.¥ f =2 Ax. 1 1,
dco.1> = Ax.x{Ay.y [ 2« Ax.xI = <I> 1,
Aca, = = Axy.x(z.zy) [ = Axy.x<y> 1,
Aenmvi.ger = $crdcnm.ges {for n > 0 and any structure index el,
Aco.cea> = $¢rla [for any structure index el.
6.14 Lemma.

0 + Aco.o> = K! It = X1 1,

(LY + Aca,r> = CII t = w 1,

(2 b+ Aco,2> = CBCCIY [ = B'v 1.

FProof, Trivial., O

6.15 Lemma,.

For any structure index e, and all A{!)-terms f, a,

Afx. A
Afx.ﬁc
(BaAcn.

(l) F £<n+1,ﬁp)

nmun

@) - §<n+1.ﬁp>(f) = a(n,ﬁ-) ¢ (Bf

B F Acnmv1. ges> (Ax. alxD)

Propf, Straightforward, f

6.16 Lemma,

rn.age> Az, £ Qu.z(ux) )
n.ge> Xz £ (z2vx))

ge>) & (CIBZBI1LCB:ov1),
[CB&vwl),
Oxy. alx:=xz.y(zx) ]2
den,.ga> Oxy.alxi={y) svxOD

AX1 . 8¢cn.ges Xz, alx: =0y, x2(yx ) )
XX1-3:n,go;(le.aKX:=(x2)3(?X1)B).

Y
=, Ser D

o
oo

i uh

rom definitions. O

Fdr any structure index e, and all X! -terms f, a,

(1> F Aco,caan

(2 F Aco.cwmas (£

3) - aco,cgag(lx-aEXB)
Froosf, From definitions.

6.17 Corallary.

A tu by £z, y(zlul )2,
' Ada Ay . £ Az . y(zluld ) ),
'u ey allxi=Xz, y(zlul ) .

i

(.

For any structure index e, all n € ¥, and all A!'-terms a,

(L) F dcen.ga> Az . alx]>

U I 3o

(27 b Acm.asxOx.alxly
(3 + d¢m.1>0x.afx

Wwnn

[ 4091

AXr. .o AZn Aco.ges Ay . alxi=dz. vy (zx,..
AXy .o AXndcoLges Ay alxi=(y) 5 (¥x,0 0.,

Xe2 1) =
L E(Tx,032,
AX1. o0 JAXn AY .Y,
AX3. o A alxi=dz. 2z, . . 2. =
AXa oo A allxi =<y, o 0, X T =
AXy . AR el = (v, ) o, L L 2T, 0 T,

[49]




Lo
Said

1
H
i
)
-

o
o

ARLAG L AR FORAL BT S ¢ AT LA B N Ta e i ® e AT 4 as R Pt L T e 4 A S ARR TN At s AT e DT at TS e 5L T D TR TR O L

6 : Proof-consistency
4) F Acnm.z> (Ax.alx]) A3, o AXn AY alxi=AZ 2R, L XY ]
AX3 o A Ay el =Ky, Ee, YO T
AXi oo o AR AT alx =Ty S (VKL 5, .. 8

on

i
~ 0 i

Tx,2 1.

Froof. (1) By induction on n, using a previous Lemma. (2)-(4) From
(1> and a preceeding Lemma. [

6.18 Corollary.

For all n € N, and all X!{-terms a,

F b, Qxoallx]) = Acn, 2> Ox.alx]).
Froof, Compare 6.17 (3) and 4>. [
6.19 iemma.

b Bda¥ = Aq ¢ ¥ = I [for any structure index el.
Froof, By induction on structure indices. [J
6.20 Definition.

fex.alxl = daldx.alx]?), for any structure index e.
6.21 Theorem.

For any structure index e, all

n £ M all Xt-terms f, a, c
and U-terms t,
(B¥co.ox): = #co,onx.aflx] = AX. X,
(Bdco,1:  dcoLrvax.callx] = afx:= x, x3,
Bicr+r.ge3?! F (finvr,.gaxX.alxI)c = fcn.gesx.alxi=)z. x{zc) 1,
(Bico.raas>’: F (dea.reaxx. alx)lt] = dax.alx:i=)z.x(z[it1)],
i far: o dex.xf = £, [x not free in f1l.

FProg Using preceeding Lemmas, one has, in TA!, for any structure
index e, and all n £ K,

(Béco.os?:
Fodca.oxx.8IlxE = Aco,o> 0. alx]) = KIQx.2aIx3) = 1.

Biéco.,1:
F odco.1x.alx] = Aco, 1 Ax alxD

Ax.xI) (Ax. alx]) = aflx:=x=x.x]1.

(.Bgcn*"l,g_ﬁ))

- ((_i(n-g-'],ga) a.{[XB)C = aﬁ(n+1,g_¢,)<>\x.aﬁxm)c =
= ()\X]‘u(\-;,Q.‘.)()\X-z.an:k.'—)\y- Xz(y'x;):ﬁ))c = ;{\cn,g_e>()\X2‘a{[X:=)&y. XZ(YC)}})
= dem.gasX.alx:=z,. x(zc) 3.

{501 {501



o
[
j
;

pralansesncy

5 ! Proof-consistency

<Bg<o.ce:)):

F (deo.cersx.allxIIt] = Aco.rwma> (Ax.alx])[t1
GudaQy.alxi=dz. yziul DIt = Ao Oy.alx:
fox. bIx:=)z. x(z[ t1)> 1.

Az, ylzt €1 1) =

nu

fidar: 1f X is not free in f then
F dax X T AalAx . XY = AL(TE) = (ALS¥ICEY = If = £, [

6.22 Remark.

In the end, the "type-free" calculi TA! have also a certain
fewristic value, since they evidentiate in a perspicuocus
way the "free structure" of first-order (classical) proofs.
ﬂ | Indeed, in practice, as, e. g., in the design of a "soft”

o procf-assistant for first-order classical logic, it is

N only this structure that should be taken into account for

! implementation purposes. [Proper "type-checking” can be

) always implemented as a distinct "module”, so to speak.]

! Clasgical proof-conversion is not trivial. In view of 6.7 and 6.21,
' g we have immediately the following consistency result.

6.23 Theorem (Consistency of classical first—order proof-calecuwli).

EOEINE: |

ConslCAg!l.

1 FProof.  Any type/proposition A in LI2,%¥] is of the form:
A=Ay o . A2 3 Az 2 ... .A, o Bl,

iﬁ where n > 0 and either B = Tor B = L or B = P, for some atomic

type/proposition P, or B = ¥u.Cfull. Define then idx(A), the irvex
mf A, inductively, by

= (1°) if B # T then idx{A) = (n,0),

(2°) if B = } then idx{(A) = (n,1),
) (3°) if B = P then idx{A) = (n,2), for any atomic type P,
N (4°) if B = %¥u.C and idx{(C) = e then idx(A) = (m,lel).

The indices of types/propositions in L[3,¥1 are, isomorphically,
the structure indices of Definition 6.1. Choose now TA! to be such
that

+ TX! hag the sanme set of (Fvariables as ! and
il *+ the (terms aof TA! are the Uterms of Ag!t.

Let Terml X!l be the set of p-terms such that ¢ + a, for some ¢
and define a map <. ..>% : TermlAg!l --> Terml *A!l, by setting
first (£)>F = t [whence alsa (v)F = v, for v £ Varyl, and by:

{511 {511




/
!
!
1
!
b

Y
el

6 Proof-consistency

(x)*¥ = x,

{(ab ¥ = (a)" (¥,
Ax: 4. a0 = Ax. (a)F,
1A, 0% = diawcas»X. (a)F,
(u.alF = tu, (a)¥F,
altl))F = (a)¥Il[ 1,

where fax.a, e  idx(A), ic as earlier.

The map (...)F erases the type-structure of A¥t, preserving - where
applicable - the indices of types/propositions as structure—indices
on g-abstractors in type-free terms of the form F.x.a.

; Then we have AXg! Fa = b ==> fA!  (a)F = (b)F, by ihduction on the
) length ofyderivation of Agt + a = b, using 6.21, and we had Consl[TA!l

in 6.7. So ComsfAytl. 0O
6.24 Remark.
In particular, ConslAy!}l yields ConsfAgl, procf-consistency

for classical propositional logic C, as formulated in the
"minimal” provability language LI[ol.

{521 {521




6 i Proof-consistency

6.25 Exercises (" y-diagonalization”, "abort" and Clavian functionals).

(1> Show that the " reductiofunctionals” {§. satisfy the following
"diagonalization” property, for any structure index e:

Ffal! F fuox. fIxl(x(fay.clx, y1)) = Jaz.flzlicix:=z3ly:=2z1>,

whence alsa a "weak diagonalization':

(foifa)! F fux.x(fay.clx,y1) = Jaz.cixi=zl1ly:=z3], and

(rde)! F fax. x(fay.cix]) = fax.cix], (y not free in cfxl),
ffff el F foX.x(fay.x@Ix1)) = dax.x(alx]) (y not free in alxl>,

uae)! P fux. x(fay. £) = fex. £, (%, y not free in 3.

- (2> Define for any structure index e [where x is not free in f1,

e (£

i
1
]

fax. £, eX.alx] fex.x(alx3?) and
vex.cx] TeaX. e (cixl),

w={£ 1= g=x. f, o=x.afxl f=x.x@lx}), etc.

o LEB. The zm-families consist of "Clavian functionals'", called

: s0 after the Jesuit mathematician Christoph Clavius (1538-1612).
The w—-families contain "abort-cancellators” that should be
familiar from the proof-calculus of Heyting's (19301 logic.l

Show that one has, successively, if x is not free in f,

oy hfad: F *x.cix] = faX Ualcix]) = fox.clxI,
hzad: F 2ox.afx] = $=x.x@I[x]) = X . wa(x@Ix])) = feXx.alx],
uae): F w={f) = §=x.f = 2 X tal(f) = fox.f = U (f).

(32> Note that (foida’) yields

i ;

(Fofad! I CaX.tay.alx,y1) = zcez.alx:=zlly:=z], etc.

i Check (fza) directly {in "type-free" A-calculus). Conclude
that the (uw-z=)-family (-pair) is tantamount the g-family.

%% (4) Express the A-family in terms of (u-z). What happens if we
: leave out the u's? Establish "A-diagonalization” praperties
analogous to (foi) and (o) abave.

;J (3> Derive properties of the s-family corresponding to those of
the §-family from Theorem 6.21. What about the u—analogues?

(6> Show that the "Clavian" =-family alone does not suffice in
order to express the basic properties of the §- and/or the
A-families (as listed in 6.21 and in the abave).

)
i
]
:
A

[52: 11 [52:11




[

7

8>

2>

(10>

(11

¥

Proof-consistency

Axiomatize the equational properties of the reductio-family ().
Formulate an appropriate notion of completensss and establish
complateness results for such axiomatizations.

Same problem for the g-family and for the g-u-family (-pair).

Formulate [stratifiedl Ay(!)-theories [= Post consistent
extensions of A{(!)] satisfying typed analogues of (:«{) and
the " {-diagonalization" properties ($¥), (o). [ Hint. Define
first an extension Xy$! of A§! by a (reduction) rule [ $§]:

SLx:A7] B fIxD : t [= L o L1, @lx:A"Mly:A"1 + cfx,y1 : L

¢ ﬁx:A_.fo}(x(éy:A‘.cEx,yB)) =2 dz: A~  ffz3(cllz, 23> : A
where <fz,z]) = clix:=z]ly:=z3, using, mutatis mutandis, the
above in order to show Consl[A#$!l. The stratified anzalogues
of ¥, (Hoi¥) are then derivable in Agst.1

Show that there are stratified analogues of u and = above
allowing alternative [equationally equivalentl formulations
for Ag{!) and the A{(!d>-theories obtained previously.

Isolate the provability system ('logic") correspanding to
proof-languages Az (1), say, based only on stratified A
[”abstraction” ”deduction”l, @ ["detachment'/modus ponensl
and & [ consgquentia mirabilis/"escape”l and, possibly, the
¥Y-primitives. [Hint. The stratified "abstraction"” = must go
into a rule. For each type A, its corresponding "closure”
Af: (A™SA).exiA~. fx is a proof-combinator E[AI, that "praves"
all instances of mirabilis conseguentia (the so-called "Law
of Clavius") A~ 3 A 5 A.1 Discuss the resulting "proof-
theories”, formulated with and/or without an analogue of

the "e-diagonalization” property.

In connection with (10), see also Curry's "logic of complete
refutability” LD (in, e.g., JSL 17, 1952, pp. 35-42 or [Curry
19631>. Compare Az! (based on a provability language with
primitives T, I, - and ¥ alone), as obtained swb <(10), with
the intermded concept of a LD-proof. Formalize the fuwll first-—
order LD-system in Az!-style. [Hints. Use the Ag(#)!-pattern,
replacing the reductio abstractor { by the stratified/typed
"Clavian” z-abstractor from (10). One should also realize that
Curry's LD has [wv,3l-proof operations that are more general
than the corresponding Minimalkalkdl/Heyting analogues: the
former admits also of "Clavian"” hypotheses ¢[x:A~1 + alx] : A.
Cf. 13.12 below. EB The full LD requires also "commuting" wv-
and 3-rules that are slightly more general than those of the
Heyting proof-calculus. For provability matters alone, see also
J. P. Seldin in Studia Logica XLVIII (2>, 1989, pp. 193-217.1

{52:21 {52:21




=y
1

b

Ei
1
|
I

3

]
]
A

7 Equational proof-behavior

7. Equational proaf-behaviors in Ai#!. Ve review several specific
equational properties of the first-order classical proof-operations.

The duplex negatio functionals amd the next proof-combinators. In
classical logic, the proofs of A= o A [ duplex negatio affirmatl,
appear as spacific functionals. In particular, such functionals can
be shown to be "recursively stratified”. In fact, the "complex”
applications of duplex negatio operators A[AJ, for A non-atomic
are recursively eliminable, mocduls proof-conversion, in favor of
"atomic" ones (A[BJ, where B is T, 1l or a "prime” typesproposition
Pius,...,und?> and a few well-behaved ('stricty linear') ordinary
functionals (viz. the stratified mnext functionals, whose type-
free structure has been already evidentiated earlier).

The A's are "oracle functionals”, so to speak. Intuitively,
an "oracle functional” is to be contrasted with functionals
usually/oft referred to as " (effective) constructions" in
intuitionism (Brouwer and Heyting) and/or in constructive
mathematics (Bishop, Bridges, etc.). In its full generality
[= for all types/propositions Al, A[A] (= AXi A=, dy:r A~ xyl,
is a case in point.

It is useful to note first that the (primitive) g-abstractors can
be eliminated in favor of the family of AfAJ-combinators. That is:

7.1 Theorem (Ff—eliminatiom.

For all types/propositions A, in LI3,¥1, any context ¢ and
all proof-terms afx], such that ¢ [x : A-1 F alx} : 1,

¢ - AfATOx: A~ allx]) =» gx:A.al[x] : A.

Froof, 1f ¢ [x : A~ F afx] : L then ¢ F Ax:A—.alx] : A=, whence, by
the definition of A[AJ}, and (B8o)X), one has ¢ + A[AIOx:A—.alx]) =a
Az A=, fy: A~ zy) Qxi A allx]) =» Jy:A—. Ox:A—.alxDy =» gy: A~ alyl =a
ix:A—.allxl : A. [

Introduced next is a family of "recursors” on the A-"oracles" -
called next proof-combinators. These are stratified variants .of
the previous next type—free combinators.

In order to ease readability, we extract, as earlier, internal
type-declarations of variables "bound” by X, ¢ under a local
with-declaration. For instance, the proof-term 1[4,B] = AX.,AY. Xy
with {x : A o5 Blly : Al is such that

1+ 1[A,BI [ = Xx:(ASBY.Ay:A.xy 1 : A 3 B2 .A o B,

[531] {531




I

7 Equational proof-behavior

7.5 Definition.

For all types/propositions A, B, in LIz, ¥1,

SEAZ = AfA} [ = AXE£:A=. §x:A~.fx 1, if A is atomic,
SEA = BJ = $-fB,1,L.B,ATGIB],
SE¥u. Afull := $cs[ATul, L, L, ATulISLAEuIDY.

7.6 Remark.

A direct inductive argument shows that S§[AJ] is carrectly
defined {exercise: only type-assignment rules are requiredl.

7.7 Lemma.

For all types/propositions C, in LI=,¥1, [ 1 + §[CE : C= o C.
Froof. By induction on the structure of C. 0O
PLifting” Bi-conversions. In order to show the fact that the "complex”
A[Al's are recursively eliminable, mogulo proof-conversion, it is
sufficient to show that, for all types/propositions C, one has:
[ 1 FS8ICT = AICI : C~ 3 C. Ve note first that the Bg-rules can be
"lifted” by extensionality assumptions, modulo proof-conversion.
7.8 Theorem ("Lifting' Bi-conversions).

For all types/propositions A, B, in LI[o, ¥1,

1° Pasic hyper-8{—-conversions.

¢ x ¢ CASBY)— 1 b+ clix] : L

1]
¢ F ¥x: (ASB)".clx] = AxXo:A. ¥xX:B.c'[%Xe,%:] : A OB
where c'[xX6,%:3 & cllx:=)z: (A0B) . x, {(Zxo 1.

29 Firgt-order hyper-gi-conversion. If u is not free in cixJ,

¢l x @ Yu. Aful>~ 1 + cffx3 @ 1L

B Y ) b e e ,
¢ - gx: Yu Afuld—.clx] = tu. §x+: A ful.c'fu,x:3 : ¥u.Aful
where c'f[u,x:1 = clxi=Xz: (¥v. Afv]). x; (zflul> 1.

Froof, Far (™Bio ("B¥¥>: from the corresponding Bi-rules, by

extensionality (n rules) and the appropriate compatibility rules,
(here: t-rules) [exgrcisel. O

7.9 Corollary (g4,
For all types/propositions A, B, in L[3,¥1,

¢gaz): [ 1 - AfA o Bl = Af: (AoBY=. Ax: A, dy:B~. £(Az: (AaB).y(zx)>
(A 2 B> 3 (A o B,

[ 551 {551




[

7 : Equational proof-behavior
7.2 Definition (The next proof-combinators.
For all types/propositions A, B, C, D, E, in Ai[o, %],

(1> $¢-04,B,C,D,E] := Ah. Af.2x. h(Ay. £Az.y{(zx2)), with
{h : ADEoCzoDI(f @ EsAsBsClIx @ Elly @ AoBliz @ EoAl,

(2) $¢c3FATul,B,C,DEull : = Abh.Af. tu . hQy. £z, yizluld))y, with
[h ¢ Aful] -2 B o C = DIulllf : {(Yu.A - B = Cliu :: W4
ly Aful = Bllz : %u.Afull.

7.3 Notation (Most gernsral NEXT-tyvpes).
For all types- propositicns A, B, ¢, D, E, in L[z, ¥1,
(1> NEXTIoIfA,B,C,D,E}] = (A B>3C=oD3 .ESA23Ba2Cao (E oD,

(2> NEXTL%1LATul,B,C,Dfull =
E [Aful] o B =2 C o Dful = . (¥u.Aful = BY = C = ¥u.DIull.

7.4 Lemma (Next— " correctness").
For all types/propositions A, B, C, D, E, in L{3,¥1,

> 1 +~ $,(A,B,C,D,E] : KEXTI=10A,B,C,D,E],
2> L 1 + $:530Afu],B,C,DIull : NEXTC¥I1[A[ful,B,C,DIfull,

Froof, Trivial [exercigsel. (Hint: Flitch/de Bruijn-style type-—
checking). O .

Consider the following type-instances of the p-terms %$.,[A,B,C,D,EJ],
$c>IAful,B,C,DIull, as well as the corresponding type-instances of
NEXT(=1[A,B,C,D,EJ, NEXTL¥1[Aful,B,C,DIull, resp:

(1> $¢>f{B,1,1,B,A] := 2h. A f.Ax. h(Ay. £(Az. y(zx))>)>, with
[h ¢+ B= o BI[f : (A o B)=llx : Alfy : B-llz : A = BJ,

NEXT{=1({B,1,1.B,Al =
[ Bol o1l >-DBo A

DSBoloclilo(A=Bl =
[B= =2 B 3 .(A 2B o ¢ )

1.

(2) $cafAful, 1,4, Afull = Ah.Af. tu.hAy. £ Az.y<zlul))), with
{h + (Afuld>= = AfulIlf : (Yu AO=ITlu:: ULy : CCAful>~-1lz : ¥%u.Al,

NEXTEYI1TAful, L, i, Afull =
LCAful o1 21 o Aful 2 . ¥u. Aful = 1 = L = %¥u.Afull =
L (Aful>= o Aful o . (¥u.Aful>™ o ¥u.Afull. :

{541 £541




-
|
|

wid

7 : ; Equational proof-bshavior

gAYy [ 1 = AL¥u. AT = A Gdu  Ad=.tu. gy A—. £z Bu. A .y (zlul )
Fu. A= o3 fu. ).

Froof., From the definition of A[CH (= Ax:C=, ¢x:C—.fxl, by 7.8,
using 7.1, 0O

Another way of writing this is, of course:
7.10 Corollary (™BA: "comples? A-eliminations).
(1) For all types/propositions A, B, in L[5, %1,

MpaAzY: U1 B ALA o BR = Af: (AoBY=.Ax: A AIBI Qy:B—. £ (Az: (AoB) .y (zx)))
(42 B)= > (A 3B,

RAYY: T 1 + Al¥u. AT = 2Af: (Yu. A=, tu. A[AT Ay A~ . £ Oz (YWu A .y (zluld )
Gu. A= o fu. A,

(2} Analogously, for all types/propositions A, B, in L[o,%¥!, any

- context ¢ and all proof-terms f,

(B & e e e

B AR ) e e e
¢+ ALY¥uw. AZCGE) = 'u, A[ATOy:A—. £CAz: (Yu.A).y(zlulr)) : ¥u.A.

Froof, (1> From the definition of ALCE, by 7.9. (2) From (1), by
B-reduction/conversiaon. ,

7.11 Theorem.
For all types/propositions C, in LIo, %1,
[ I = 8EC3 = A[CY : C= = C.

Frowsf. By induction on the structure of C, using (Bg)-rules and
extensionality; in fact, the ("BA)-"hyper-rules” above [7.101.

(1> If C is atomic, there is nothing to prove.

(2) Else, we must show that, for all types/propositions A, B, in
Lo, %1, (viz., for C = [A o Bl, ¥%u.A),

ATA = Bl ¢ (A -5 B)= 3 (A o B>,

21> [ 1
1 AT¥u. AT ¢ Yu Afuly= o Gu. ATfuly.

A - BI
22> [ ¥

u. Al

=8
=8

The details are easy and can be left ta the reader. O

[561 (561




7 Equational proof-behavior
7.12 Remark.

The procedure used to eliminate "complex"” A's" in the abave
is implicit in the [Prawitz 1965, 19711 Mstyle presentation
of first-order classical logic (where it is also obliquely
referred to as “constructivization”).

Extensionality principles and ground proof-combinators. The proof-
calculus Ag! is extensional in the expected sense. In other words,
all proof-operations involved in A§! can be shown to be "extensional",
relative to the formalized concept of proof-eqguality/conversion.

7.13 Theorem (Extensionality principles).

For all types/propositions A, B in L[=,¥], and proof-terms
1 a, b,

" (@xt A): ——————m e , [x not free in a, bl,

- ext @O s, [x not free in a, bl,

(ext 1) ———r— » [u not free in a, bl,
¢ Fa=">bIL0: Yu.Aful 1.

it

Froof, (ext X): Assume ¢ - a, b : A 2B, ¢[ x: A1 F ax = bx : B,
such that x is not free in a, b. Then, by (3>, GoA), etc.,

i

¢ - a €= Ax:A.ax = AXx:A.bx =» b : A o B,

whence ¢ - a = b : A o B,

(ext ): Assume ¢ b a, b : A, ¢f x : A- 1 Fxa = xb : 1, (x not free
in a, b). So, by (to¥), (3¥, ¢ F a €= ¥x:A.xa = Fx:A~xb =» b : A,
whence ¢ - a = b : A.

[ttt

(ext !): Assume ¢ F a, b : Yu.Aful, ¢ u :: U1 + aful = blul : Aful,
j such that u is not free in a, b. Then, by G&¥>, (a¥), etc., one has
¢ - a €= tu.alul = ftu.blul =» b : ¥u.Aful. So, ¢ - a = b : ¥u.Aful. O

In Agt, the "extensionality” assumptions can be also expressed in
terms of Boolean proof-combinators.

[571 £571]

?
i



7 Equational proof-behavior

7.14 Theorem (Extensionality principles: combinatory versiom.
For all types/propositions A, B, in LL=, %1,
[BIl: BIB,B,AJ(If{BY> = IfA-B} : Ao B = .A o B,

.
LAvl: [ 1 + AIAX & w[A] (= BIA™, A, ATCATAY (YIATYY = I[A] : A o A,
[BuIl: [ 1 + BOIA,ATZCIEAD) = If¥u.Al : ¥u.A = Yu.A [u not in EV A1,

Froof. For [BIl one has, by unfolding, [ 1 + BIB,B,AJCIfA]) =.

Fa (Ax: (B3B).Ay: (ADB) . Xz:B.x(yz>) (II[B}) =» ly:(A:B).Az:B.IEB}(yz) =
Ay: (ASB)Y . Az:B. (Az:B. 2> (yz) =» Ay: C(ADBY.Az:B.yz =» Ay: (AoB).y =,
« I[ASBY, using (13)), as a last reduction step.

i

A¥1: Note first that: [x : Ally ¢ A™1 + 9[Alxy =» yx : A~. Then

1 = ALAY © v[A] = BIA=, A, ATCALAD) C(YEAD) => Az A A[AT(TLAT(Z>)> =
AZi A (XX A=, Jy  A— . xy) (VIAT(Z)) =» AZ: A, gy A wIAT () (y) =2
AzZiA dy:AT.yx =» Xz:A.z =, I[AZL, by (13¥ [last reduction stepl.

i oe

¥

} Finally, for [Byull, if u is not in FVu(A) then [ 1 + BuA,AJCIEAD) =
N = Qx: ASAD  Ay: (Fu. A tu.x(ylul ) CIEAD) =» Ay: (fu A), tul (I[AD) (ylul)y =
' E Ay: (Yu A, tu.ylul =» Ay (¥u. A .y =, II¥u.Al, by ¥) [last stepl. O
| &-rules and ground proof-combinators. In the end, the conversion

| rules involving f-abstractors can be also expressed in "closed®
Lo
form, by means of (ground) proof-combinators only.

B 7.15 Definition.
For all types/propositions A, B, C, in Lin, ¥1,

g (1> pfA,B,C3 := AX:i A Ay: (B2C) . Az: (ADBY . y(zx),
2> puffA,Bl := !u.ly:(A:B).kz:(ﬂv.AKvB).y(z{u]).

Y
| 7.16 Lemma.
4
For all types/propositions A, B, C in LL=,%1, one has,

o (1> [ 1 + pufA,B,C3 = B'[ASB,B,CI = Cx[A,BI : A 5 .B=C = (AZB=oC),
fwhere ¢ stands for BEA:B:B,(B:C):(A:B:C),A}],

i 2> [ 1+ polA,BI = B'[¥u.A,A,B] S, CaulAD : ¥u.(ASB o . (¥v.A>SB),
o Lwhere ¢y stands for BUE(¥u.A):A,(A:B):((Vu.A):B))B].

7.17 Theorem (A-rules)y.
For all types/propaositions A, B, in LEo, %1,

LaTtl: ¢ FE L T= ==>¢  A[LTI(EY

€ : T,
LALL: ¢ £ 1= ==>¢ - ALLTC(ED

£581 ’ {581



i H
LA

PR ‘): 00

Equational proof-behavior

R et .
¢ - ATASBI(E£Y(a) = ALIBRI(f ¢ uIA,B, 11> @ B
t ¢ = BE(ASBY)—,4,B-1 1,
¢ £ WuAde, et i U
LAY]: e

¢ F A[Yu. ATCEYI4] = ALARCE © polA, 13041) : Afu:=t]
[ o = BLCfu. Afuld—, &, CAful>~1 1.

Froof., TATI: If ¢ - f : T= then ¢ - ARTIEY = Qx: T= dy: T-.xy0f =
= ¥y:T7.fy = 2, by (BID.

4ll: If ¢ - f : ]= then ¢ ~ ARLI(EY = Qx: L= dy: b—.xy2f = dy:l-. fy =
= EyLy:=1LL13 = £CILLDY : &, by B#b. )

[431 and [AY¥1: From the By¢-rules and the definitions of p, Mo above,
LAlternatively, one could have had piA,B, L1 = B'[A-B,B, 11 ¢ Cu.IA,B]
and poffA, LBt = B'Evu.AEuB,AEuﬁ,LE%C*uKAKuEB[th for instance.l [

[ &

{591 {501




i
G

8 | Boolean Combinatory Logic

8. Boolean Combinatory Logic: the theary of Boolean combinators.
In this section we introduce a proof-combinator theory CILCQY for
first-order clasgsical logic.

CLCQl is an eguational thsory 1in the stratified language melCRQl.
As a combinatory logic, it codifies the equational behavior of
first-order classical proofs. In fact, it is tantamount Ag!, as
we show in this section.
As earlier, a proposition is a type. The titype syntawx of CICQY is
thus the provability syntax of CQ. On the other hand, its proof-
syntax 1s, by definition, the same as that of nICQl
Intuitively, the statemsnts of CICQl are of the following forms:
= A is a type/proposition LA :: typel,
+ X hags type A, [X : Al
+ t is a +term [t :: WD,
as in nlCQl, with, moreover, statements of the form

*+ X, Y are equal combinatory proof-terms of type A [X = Y : Al.

The latter statement-forms are considered as abbreviations of the
conjunction "X : A and X : A and X = ¥, in the metalanguage.

The above statements are supposed to be relativized to contexts,
in the obvious way.

So, in a [proof-]l context ¢, the auxiliary syntax is as follows:

+ gpi—theoretic statements: ¢ - t :: U, ¢ - A :: type,
* rlagsifications ["assignments”l: ¢ - X : A,
* pguations " proof-equivalences'l: ¢ o X = Y : A,

The epi-theoretic statements "¢ - A :: type"” are usually phrased
in a collogquial style. Formally, they are supposed to be such that
the Uparameters of A are among the (Fparameters of <.

8.1 Definitian,

For all types/propositions A, B, C, in L[3,¥1,

BIA,B,CI 1= daxi A, dxy: (B2C) ., Auz: (ATB) .y (zx),
PullA, Bl = 1xu.dxy: (ADB) . Az (¥v. AfvID .y (zlul).
8.2 Remark.

(1> For all types/propositions A, B, C in [[3,¥}, one has,

(#>: [ 1 ¢ pffA,B,C] : A2 .BoC 23 (A2BoOQ,
(a2 [ 1 b pollA,BR @ ¥Yu. (A 3B o . (¥v.A) o BY.

[601 £60l




8 ! Boolean Combinatory Logic

(3> One could have defined alternatively, in CICQ] and n[CQI,
for all types/propositions A, B, C, in LIz, ¥1,

#IA,B,C3H
#ulA, Bl

o

2'[A-B,B,CI ° C«I[A,B3,
B'I¥u.A,A,BY Su LxolAld,

with, e. g., if BfA,B,C] were primitive proof-combinators,

¢t for BIASBDB, (B3C)=(A=-BC), Al and
zu for Bol u.Ad2A, (ASBYo((Yu. AY=BY > 11,

As noted before, the combinatory proof-theory CILCQY presupposes
the syntax and the rules of wmICQl, i. e

A ]

+ context rwules: < >, <I>

>, B>, <EY>,
o * type-specifications: (I, G, &), (), 4>, EW, (&, (B, EW,
; [possibly: (&>, L), (B, (CW1T,
fid = type-derivation rules: {zel, [¥el, [¥ileoo.

™ The specific eguational procf-behavier in CICQl is as follaws:

8.3 Definition (The combinatory proof theory CLCQY).

Mate, In order to spare on typography, we agree on the
fact that assumed uniformly, before + ¢, or [x : D} + o,
or fu :: U Ik 5, in the statement of the rules below, is
- an arbitrary context ¢.

1. Grownd equations.

X

™
Ji
el
T

M.
I

==> + IEAJ X : A,

A
gl X ¢ A, Y @ B == KEA,B] XY =X : A,
A

e - F = .B23C, G A B, X A
[S]: —m—mmmm e ,
. - S[A,B,CTI F G X = FX(GX) : C
- ¥l B X ¢ A, It oi: U==>+ EJEAT X [+l = X : A [u not in FVu(A)1,
- F yu. (A[ul = Bful>, + G : ¥u.Aful, *+ t U
T T LI ,
- - 8,IA,BI F G [+] = FLt]l(GItD Tu:=t]
L
Ll CF : Ao YuBful, Ft :: U [wil =X : A
T [u not in FVy{(A)1,
- - 8,[A,BI F (£l X = (FXOL+] : Bfui=t]
- F Yu.¥v.Afu,v3, b+ s U &+ t u
L 'E_u] —————————————————————————————————————————— »

§ . - 2GIAT F Us]l [t] Fltlisl @ Afui=t,v:=s]

[611 £611




8 Boolean Caombinatory Logic

LATI: & F T= ==> FAITI F=04:T,
LALl: B F i= ==> + A[l} F = F(IIlD> : 1,
. + F (AoBY>=, + X A
O ATASBT F - ATBICF - glA,B 4100 ¢ B
= F ¢ (Yu. A=, ¢ I+ I ¥

2. Congruence.

o [el: F X : A ==> X = X A,
Lal: FX =Y A ==> Y = X A,
L1 X =Y A, FY =2 : A== F+X = Z A,
: [pol: P F =G : ASB, X : A ==> + FX = GX B,
23] - F A o B, b X =Y : A==+ FX = FY : B,
[ pil FF =G : ¥%u.A, - t U ==>  Fl[t]l] = G[ € : Afu:=t1.
| 3. Extensicnality
. - F A o B,
- A o B,
[x Al F Fx = Gx : B
CEXT A\l ——————— e , Ix not in F, G1,
9] FF=G: A3 B
- X A,
Y : A,
; [x : A-]1 + XX = ¥ : |
b *{ EXT 41:; ——————————— , [x not in X, Y1,
FX=Y: A
L : - F : ¥u.A,
G ¥u. A,
fu :: N = Flul = GLul : Aful
LEXT '} ——————mrr e , [u not in F, G1.

8.4 Remark (SZome alternatives).

(1> In [A¥] one can restrict A to atomic types/propositions.

(2> If gffA,B,CH, pulA,Bl are defined as in 8.2 (3), then one has,
alternatively, for all types/propositions A, B, C, in Ll[3,¥%1,

< = in [ ADl: pffA,B,L13 = B'[ASB,B, 11 ¢ CxIA,BI and
O o = in [AY¥1: polA,130t] = B'I¥u. Aful, Aful, L3 (Cx IALulIL 1),

(621 [6z]




8 ‘ Boolean Combinatory Logic

3> I1f, for all A, B, C, in Li3,%¥1, EIA,B,CI, CIA,B,Cl, EBola,BI,
CullA,B] are among the ground combinators, then one needs also,

 CIA,B,CI F X Y = FYX : C
FF: ADB, -G : YuA, It :: U
(8ol —————— e » Lu not in FVu(A,B)1,
F Bu[A,BI F G [+l = F(GL%1) : B
- FF: ¥Yu. (A2 B, -G : A, It v
] [CLY: — e , [u not in FVu(AY1.

o - CulA, B3 F G [t] = FLt1G : Blu:=t]

Fro In these conditions, it is appropriate to assume that used
;! are the exitended "algorithms" for A. and !'x [2.12 (2)1.

o (4> If EfA,B,C] is a ground combinator then ¢ is supposed to be
)j defined wvia X ¢ Y Eg¢ EBIA,B,CIX)(Y> and, obviously,

+ in [43):

-y = in [4¥1:
i L in (av:

stands for BL(A2BE>—, 1,B"1,
stands for ZL (¥u.Aful>—, L, (Aful>—1,
stands for BIA=,A,Al

€

One should, however, realize, that Ax is always assumed to
be defined such as to make [ 2] hold [{cf. 2.21 (1)1, 1i. e

A 1

"

Lol X Y 2 Joex:C.X(¥x> ¢+ C 2B, for X : Ao B, Y : C o A,

&

(53> The "o-monotony” rules [p2] and [v3]1 can be replaced by:
sl ¢ F =G ¢ ASB, ¢ FX =Y. ==> ¢ - FX = GY : B,

(6> Ve can define, for all types/propositions A, in Ll[3,¥1,

/ S.ulAl 2 (@A, Al (TE¥u.ADY : ¥u. (¢v.Afu:=vE o Aful),
Lo fprovided v is not in FVG(ALul)1l,
8.0A7 = (BuolAlX[t] : ¥v.ALv] = Afu:=t3, [ - t :: U1,
------ a.[Al F 2 ExolADIEIF [ (BolA, AT (II%u. ADILtIFL,

£in context ¢, for F such that ¢ +~ F : ¥v.,ALv1l,

whence the instantiation rule could have been expressed by:

(ed: ¢ ¥t U ¢ +F : ¥v.AIv] ==> ¢ + B, AT F : Afu:=t],
[provided v is not in FV (ALul>l.

Ve can easily show that, from an equational point of view, CLCQ]
is not "more" than Xy!.

[631] (631

3
!
i
§
ood



8 ' Boolean Combinatory Logic
8.5 Theorem (X! ~Embeddimng for CILCQY).

For all types/propositions A, in LI3,¥%¥1, and all proof-
combinators X, Y in CLCQI,

¢ e X =Y ¢ A == ¢ F X0-= (IO- : A

Froof, By induction on the [length ofl] derivation of the premiss:
the equational behavior of IILAL, #IA,BI, (BIA,B,C31, CIA,B,Ch,
SfA,B,Cl, etc. is straightforward. For [ATl, [ALl, [Az1, [AY],

L A¥]l, one has the analogous "closed" derived rules of section 6.
The congruence conditions are immediate. Finally, the images aof
[EXT A1, CEXT 41, [(EXT !1 have been obtained in section 6. [

This yields immediately the following [Post-1 consistency result.

8.6 Theaorem (Fost-consistency).

ConstCLCQl] (i. e., the proof-equality of CICQl is non-trivial’.

Froof., From ConslAyg!l and the A{!-Embectdirng Theorem above. [
The converse embedding is meant to show that CICQl can "simulate”
the equational behavior of A§! and requires several preliminary
lemmas.

8.7 Lemma {(Fositive B ruales).

For all types/propositions A, in L[5,%1, and all combinatory
proocf—terms X, Y in CECQ1,

¢ - X : A
¢ x : A1 + YEx3 : B
(B:}ux ) T e T S e T T T T T T e T T T T e
T Quax A YIxI)Y = YIx:=XE : B
¢ &+ t u
¢f u ¢1 F XEul : Aful
(B¥la): ——m o e e e e e e e e » fu not free in %1,

Proof, (B3Xx): By induction on the structure of YIxd. (B8¥!x): By
induction on the structure of Xful. O

8.8 Corollary (Fositive a—rules.

For all types/propositions A, in L[3,%1, and all combinatory
procgf-terms F, in CLCQl,

i
!

2da): If x is not in F, ¢ -V F : A 3 B ==> ¢ + Jxx:A.Fx
F

it
A

(a¥tx): If u is not in F, ¢ Yu. A ==> ¢ b+ !yu.Flul

[641 {641




8 | ' Boolean Combinatory Lagic

FProof., From (10Xx)= and (A¥!x)=, in 2.15, where we had the same
rules with = in place of =, [

In presence of (13Ax) and (¥!x), the "extensionality” of the Au—
and !x—proof-operations can be expressed as follows.

8.9 Lemma (Fogitive L-rules).

For all types/propositions A, in L[2,%1, and all combinatory
proof-terms X, Y in CLCQ1,

¢l x ¢ Al + XIx3 = YIx] : B
(BDdk): e s

(%’-}‘! T e

Froof, (83Xs): Assume ¢l x : A 1 + XIxJ = YIx} : B. Then, one has
also ¢lx:Al F XIx] = Qux:A.XI[xD)x = Oux:A YExD)x : B, by (B3i«),
whence ¢ I Jxx:A.XEx] = Axx:A.YIx] : A o B, by [EXT Al.

(L¥!x): Analogously. Assume ¢[ u :: U1 F Xful = YEul : Aful. Then,
¢lu ¢ W F X[ul = Cuu.X[ublul = Cuu, Yfuldlul = YEul : Aful, by
(B¥!x), whence ¢ b !mu.Xful = !«u.YIul : ¥u.Afuld, by (BEXT !'1. 0O

8.10 Lemma (Negative [dx1 extensionality).

For all types/propositions A, in LI[3,%1, and all combinatory
proof-terms F, in CLCQ],

(iodx) If x is not in F, ¢ + F : A ==> ¢ b Fux:A—.xF = F.
¢ x : A- 1 F XIxI = YExI : 1L
¢ b daxr AT XEx] = dxx:A-.YIxT : A.

Frosf., (iofx): Assume that X is not in F and ¢ - F : A. In 2.16
we had, with T_[AL(F) := SIA™,A, LICIIA-D) (KEA,A-T(F)),

Mogx) =t ¢ FF @ A==>¢F fxxtA-.xF = A[AJ(TLAJ(F)) : A,
in the same conditions. The rules of CICQ] yield then

L o x ¢+ A~ 1 b PJATFY (X)) = SIA—,A, LTCIEA—D1) KEA, A (FY (x) =
= ITA-D (x> CKEA,A-T(F)(x)) = %F,

whence ¢ - Y_[AR(F) = A4xX: A7, P_JAT(F) (x> = Aux:A—.xF : A=, by
(3Ax), (£2X), etc. But, ZIAY =gr CulA, 1] = dax: A Aay:A-. yx.
S0, by (BoAx), one obtains ¢ + ZIAJ(F) = Qax:iA. day:iA—. yx) (F) =
= Ay AT yF ¢ AT Eo AxxtAT.xF = Z_[AJ(F) : A= and this yields,
by (3, using GQ3#x) =

{651 £ 651




D e

i
|
H
i
:

renny

8 Boolean Combinatory Logic

<

rod
¢ F ATAB(ZIAR(FY) = AFLAT(Y[AT(F)) = {xx:A—.xF : A.
From this, by (11, (4%, (2] (cf. 2.21), (B2i«), (43) and (v,

¢ - F = I[AQJ(EY =
= ALAT(YIAICE))

(ATAY © ZIAD (F) = Goax:C, ATAT(PIAT GO Y (F) =
= FxX:tA—-.xF : A,

(£3¢w): By (L3)) and (v, O
8.11 Remark (B f« rules),.

It is easy to see that the ¥-analogues of the Bi-rules of
Ag! are also available in CICQ) [ exercisel. (Mint: one must
use the A-rules of CILCQl, viz. LaT1, [é}), 431 and [A¥1.)

8.12 Remark,

Given [A¥] and the monotony rules (u3), (<3), one can show
that the rule [EXT ¢l is, in fact, redundant. Indeed, assume
¢EX: A ¢ X, Y: Aand ¢ [x : A-1 + xX = xY : L. Then,
by (¢3¢x), one has ¢ + §gxx : A—.xX = §uxx : A—.xY, whence
¢+ X =Y : A, by (a3Ax). From the above, it is alsoc clear
that the proof of (toix) does not use [EXT #1.

8.13 Theorem (Combinatory embedding =f AXi!).

For all types/propositions A in LI{2,¥], all proof-terms a, b
in A¢!, and all contexts ¢,

¢ -a=D>b: A == ¢ F (@< = (br< : A.
Froof. By induction on the [length ofl derivation of the premiss:
By, (BY¥), DX, Ly, resp. translate into (B3Xx), (BY¥!x),
ioAx), (i¥!x), resp. and (nog) follows fronm (n2¥x’), whereas 8.11
yields the (Bygx—rules). The Ly rules (L3X«), (L3dx), (L¥'s) have

been obtained above; the remaining congruence rules are already
in the primitive combinatory syntax. 3

So, ultimately, the combinatory proof-theory CIC(Q>1 is equivalent
to Ag{!). One can also see easily that the result obtains for the
corresponding propositional fragments (as parenthesized).
In the end, from 4.3 one has, a fortiori, the following,

8.14 Coarollary

For all types/propositions A, in L[3,¥1, any combinatory
proof-term X in CICQl, and any context ¢,

T e X 1 A ==> ¢ . (XY= = X : A,
Froof., In 8.3 we had, for n.lCQl, ¢ &+ X : A ==> ¢ &_ (X\-)©S = X,

in the same canditions.

£661 [66]



8 Boolean Combinatory Logic
In order to complete the circle, we can note also the following:
8.15 Lemma.

For all types/propositions A, B in [[3,¥1, all combinatory
praof-terms X, in CICQl, and any context ¢,

(1> ¢ x: A1 . X : ==> ¢ F (AxxX:A . X0%- = Ax:A. (v : A o B,
2 ¢ L x : A" ] Fe X ¢ L ==% ¢ F (gux:A—. X% = gxiA—. (X0 : A,
3 ¢ u:: U1 ¢ X1 A==>¢ + (1yu X% = tu, XD : ¥u, A,

Froof., (1), (3): By induction on the structure of X. (2): From
(1) and the definition of §x. Indeed, if ¢ [ x : A~ 1 bk X : L
then applying the (IH) tacitly, we have

¢ F (Gaxt A7 X000 ZEare (ATAT Quext A X000 =
= AIAD-Qux:A~. X0 = [using (1)1
AIAD Ox: A~ (O%) = QA= fyt A~ xy) QxiA—, (O%) =2
=2 dyrAT QAT OBy =2 Py A OHIxi=y] Ea dxiA-, QDY O

8.16 Theoremn.

For all types/preopositions A in L[3,¥1, all p-terms a in
Ay!, and any context ¢, ¢ + a : == ¢ F ((a)">- = a : A.

Froof. By induction on the structure of a. If a is a p-variable or
f, the result is immediate. If a is of the form bc or bl tl, the
(IH) yields the result directly. Else, if a is Ax:A.b, §x:A~.b or
tu.b the (IH) yields the result from 8.15. [0

[671 £671




i,
)
5
i

Q Détour—-elimination

9. Détour elimination. Intuitively, applying a reduction rule to
a proocf-term in X¥! amounts to the elimination of a proof-détour
(Fewelsumwsy, in Gentzen's terms). This way of speaking has an
wperational reading and can be made technically precise. Mutatis
mttandis, the following terminology is as in [ Barendregt 19841.

9.1 DPefinition.

(1> A notion of reduction for A§! is just a binary relation r on
Terml A1,

(2) The p-terms falling within the domain of a notisn of reduction
r are identified as r—-détours, or r-redexes, whereas the range
{co-domainl of r gives the associated contracta.

(3> A p~term a is said to be r-mormal or in r-mormal form  if no
subterm of a is a r-détour.

9.2 Notation.

If vy T2, ..., In are notions of reduction then Firz. .« T
stands for the (set-) union r = Ujcym Tra.

9.3 Example.

[aoyl = { C(¥=x:A—~.xf, £) : £ € Termi Agtl, % not in FV(E) }

is a notion of reduction in Ag!. Then the fnodl-détours,
determined by [n2yl, are p—terms of the form gx:A—.xf, with
f € Terml Ay§!'l, and x not in FV.(f).

Equivalently, a notion of (proof-) reduction can be defined by
specifying exhaustively the typology of r-détours and r-contracta
(by stating "r-contraction rules”, say).

9.4 Remark.

In fact, A¢! has a standard notion of reduction: riig!l or,
simplifying the notation,

Adt = [BIAICAoAILBFICnodll BYIL Y1,

where [B¥l is short for [BITIIRILIIBEIIRI¥]. This notion is a
complex one and can be further analyzed into A = [83X1Ln3Al,
g = [B¥lln2dl and ' = [B¥ILa¥l, resp. and, in more detail, by
distinguishing (as in work of H. B. Curry et al.) among B-—

and n-type notions: [B23X]l vz ([n2Xl, [B84] vs [a>ofl, etc. Each
such a notion can be given by an appropriate "r—contraction
rule”, as already suggested in the presentation af Ajy!.

(681 [681




£ %

Rt i

e £
RN

9 Détour—elimination
9.9 Notation. Terminology.
If r is a particular notion of reduction then

(1> =2y Cone—step r-reductiom 1is the least relation on
Termt Xg!1, such that .—», contains r and is compatible
with the syntatic operations in TermfA#!1l,

2) »=2 (r-contractiom 1is the reflexive closure of —2,,

(3) »=2 (r-reduction or r—reducibility) is the transitive
claosure of .—>,

4> o= (r-conversion or r-egquality or r-convertibility)
is the least congruence on TermlAg!l relative to the
syntactic operations in Termf{Ad!l or, alternatively,
the equivalence generated by ,—».

9.6 Remark.

One has, »-?»3 € —» € =» € .=, for any notion of reduction
r on Termf Agtl.

9.7 Definition.

In particular, if ¢ + a ,.=» b, for some r-normal p-term b,
then b is said ta be a r-rmormal form of a.

Reduc tion sequences, normalization. From an pperational point of
view, the r-normal p-terms can be thought of as limits of certain
sequences of p-terms. One can elaborate on this, with some profit.
9.8 Definition.
(1> If r is a notion of reduction, a r-reducticon sequence from
a is a (possibly infinite) sequence of p-terms in TermiAy!l
g = a, ai, &=z, 8=, ... such that

¢ - a r">'l a9 r_>'l = r—>‘l s r"'}‘l CIEINY

i. e., the members of p are linearly ordered ['connected”l
by one-step r—reductions.

(2) If r is as above and a is a p-term in Term[ A#!l, then
Lir,al = { p : p is a r-reduction sequence from a ?}
is the r—reduction spectrum of a.
NB: Iir,al can be viewed as a tree of p-terms, with bottom a.
9.9 Notation.
(1> We write 1h(p) for the number of terms of p, if ¢ is finite,

else, for caonvenience, lh(s) = u (where u denotes the first
transfinite ordinal?.

[ 691 {691



3
|
|
i
i

"
{

©

Détour—elimination
2 If r is fixed, we write I(a’ for the r-reduction spectrum of a.
2.10 Definition.

Let r be a notion of reduction on Terml Af!l. A proof-term

a £ Terml Ag!l is r-bownded (bounded relative to T or even
"strongly normalizable relative to r'"?), if there is a (non-
negative) integer n such that no r-reduction sequence ¢ from a

hzs 1h(?> > n. In this case, n = bnd{(yp,a?) iz the least such n.
Therefore, ¢ + p E & »=¥1 &1 +»— P21 8=z »~P1 8= »r—%1 ... implies that
bond(s,a? > bnd(p:,a:) > bndész,az) > bndigs,az? > ..., where ;i is

the r—-reduction-sequence from as.
9.11 Remark.

(1> 8o, if s is r—bounded, the r-reduction spectrum of a2 contains

only "bounded paths/branches”; that is: every r-reduction
sequence ¢ £ Lir,al is finite ["any ¢ € IZlr,al terminates in
a finite number of steps” or still, negatively, "there is no

infinite r-reduction sequence from a”l.

(2 In terms of trees, this amounts to the fact that the r—reduction
spectrum Llr,al of a has no infinite branch. Conversely, the
existence of such a tree implies the fact that a is r-bounded
(this requires the use of Konig's Lemms [KLl, however). Indeed,
Lir,al is a finitely branching tree, by definition {(since a
p—term has a only a finite number of subterms). If it has no
infinite branch, it is [by KLl finite, whence the existence of
an integer bmnd{a) > bnd{p,a’, for every branch ... of Zlr,al.

Q.12 XNotation.

If A is a typed X-calculus and r is, mwialis mutarndis, & notion
of reduction {(for &, defined on the set Termlil of A-terms?, then

"SRLA,rl1” abbreviates the statement "if ¢ + a ¢ A in A, then a is
bounded, for all a £ Terml 21". VWe write also SR{A#!] or SHNIrl,
for SRIAY!, ), if r is fthe sterwlard notion of reduction of it

SBlrl reads "r is strongly normalizable" and states the existence

of a bound bud(a? > bnd(p,a?, for every r-reduction ssquence ¢ from

a. A caonpact aquiw lent statement [by KLl amounts to the fact that
Tl A

T raacfuis LI orn sme Lof p-termsl] are Finite.

In particular, if a is r-bounded and SWIXH!, r] holds then any #
in the r-reduction spectrum of a will eventually terminate in a
r—rormal  p-term b such that b is & r-normsl form of a.

2.13 Remark.
Note that SKLA{!,rl does only establish the sxisterncs of

r-normal forms (in AJ!Y, it does not state anything about
their wnivity, however. Usually, this is shown separately.

{701 £701




]

b5 =
Normsaisind

(SRR

i
-
i (’3

S
h;y/)
N
Vi
4

S
Ll

'Ti
.

¢ v Dé&tour—-elimination

9.14 Remark.

A weaker statement WNLAF!,r] ("weak normalization" or “"weak
normalizability”) states the existence of a finite path in
lr,al, for every p-term a.

Confluence statements and conflusnce proofs. Let A be a A-calculus,
(e. g., A restricts A#! to a subset Terml Al of Terml AF!l or A extends
Ad!) and r be an arbitrary notion of reduction [a binary relationl

on TermfAl. With A fixed arbitrarily, the remaining notions above

can be defined relative to TermlAl and r in a similar way.

9.15 Notation. Terminology (Conflusnce).

Then CR[A,r] is a statement about the associated relation
«=2 of r-reduction [the transitive closure of .-¥»), viz.,
"for all a, by (1 := 1,2,

¢ Fa =>» bs ==> ¢ F bs =¥ C,

for some ¢”. This is the so-called "Church-Rasser property”
for »=», or yet "the diamond property”. If CRLA,r]l holds
then =% (or A, if r is the standard notion of reduction in
A) is said to be conflusnt.

The “residuation” method. Usually, a confluence property must be
shown separately, for each A and each notion of reduction r on
Terml Al. There is, however, a nearly standard method of proving
CR-statements, applying uniformly to a large class of pairs [A,rl,
where A is a A-calculus, and r is a notion of reduction on Terml A} .
The method is due to J., B. Rosser, W. W. Tait and P. ¥artin-L&f
({Rezus 1981], [Barendregt 19841, [Takahashi 19891).

For a given "CR-pair"” [A,rl, the technique [the residuation method
consists of endowing the given A with a residual (or parallel)
extension =r (of ), "“the residuation of 1.

Residuations can be described schematically. If r is an arbitrary
binary relation, let r°® be the transitive closure of r and r®° be
the reflexive and transitive closure of r.

Now, for a given pair [A,rl, the residuation ™r of r (on A) is
a relation on Terml Al, the set of terms of A, such that:

(0°> ™r can be viewed as a simultaneous operation on
(sequences of "nan-interferring") [A-rl-détours,
attempting to eliminate [A-rl-détours in "parallel”,
so to speak, whereas, technically,

(1°) =r is a reflexive relation on Terml Al,

(2°) ™r can be shown to be compatible with the syntactic
operations of A,

3°)y Cr)° C (=24)=° = (.=-P)°,

L71] [711



i

o Détour-elimination

[That is: (™r>°, the transitive closure of =r is
contained in the reflexive and transitive clasure
of ~—2: (the "one-step" r-reduction relation on
Term{Al), or - equivalently — the transitive closure
af »~—» (the r—-contraction on Termi A1) contains the
transitive closure aof =r.l

(4°)> one can prove CRLA,™r]l easily.

From (1°)-(2°) one has lmmediately

B 21 £ «—2 € ™r, whence
6% Go=240=° £ (=2)° £ (™r)°, and, finally, by (3°»,

(7°) (—2yq)=° (=2)° = (=ri°,
The intended result, CRIA,rl, comes out by a technical lemma.
9.16 Lemma (Transitive closures respect conflusnces).

If r and ~r have the same transitive closure, as relations
on Termfi Al, then CRIA,™r] => CRLA,T].

FProgf. Basy. [ Exercissl. [
9.17 Remark (" Residuals).

The proof of a CRLA,"rl-statement for a residuation =r on A
can be reduced, in a standard way, to a proof of a statement
about/on "residuals'.

Schematically again, where ».=» stands for the ™r-reduction
relation on TermlAl, the "r-residuals” are terms of the form
(a)r== in Terml Al, generated inductively from terms a in
Terml A1, such that one has the following "residual-inversion”
property, resfiA,™rl, for short:

for all a, b € Termldl, ¢ b 8 nr=r b ==> ¢ I b x.=P {(a)r o=,

Obviously, resiA,™rl ==> CRLA,™rl. So, finally, the main task
in the proof of a CR{A,rl-statement, by the "residuation”
technique, would mainly consists of finding an appropriate
inductive way of generating '"r-residuals" of terms in Terml Al.

9.18 Remark (" Tracing a residual-history').

There are analogous techniques meant to exploit induction on
"residuals, consisting mainly of a systematic "tracing"” of

a "residual history” (as, e. g., by "underlining" certain
types of détours - the ones that should be eliminable - and
by "freezing” the remaining ones, in order toc "block” their
elimination). Such techniques amount, essentially, to a
similar attempt of making explicit recursion on “residuals”.
(See, e. g., [Klop 19801, [Barendregt 19841 for examples.)

L721 [721



A DR LT

it

stz

9 Détour—elimination
Weak confluernce. There is also a weaker statement, WCRLA,rl say,
connecting r—contractions and proper r-reductions, in a similar
"diamond-1like"” way.

9.19 Notation. Terminology (Wealk conflusrnce).

If r is a notion of reduction on Terml Al then WCRIA,r] is
the statement “"for all a, by (1 := 1,2),

¢ a2 bi ==>¢F bi ~=2 C,

for some c”. Alternative way of speaking: ".=%» is weakly
confluent” or even ",=» is weakly Church—Rosser".

9.20 Remark.

If r is a notion of reduction r on Terml Al, then one has
CRLA, rl ==> ¥YCRI[A,r]l, but not conversely.

For a large variety of notions of reduction r on TermlAl, WCRL[A,rl
is, usually, easier to prove than CRLA,r]l. WCRIA,rl-properties are
useful, in presence of stronger [A-rl-properties. For most typed
A-calculi A, there is a a well-known strategy of obtaining CRILA,rl-
proofs, in view of the following:

9.21 Fact (M. H. A. Newman 1942).

If A is a X-calculus and r a notion of reduction r on Terml Al,
then WCRILA,r) & SNLA,r] ==> CRIA,rl.

Proof. By reductic ad absurdum. 0O

Recall that A is the ordinary typed X-calculus with types taken
from LIl (this language has also T and l as "atomic types").

9.22 Fact.
SHLAY.

Froof. Well-known. Cf., e, g., [Tait 1967} or {Hindley & Seldin
19861, Appendix 2. [}

Usually, SNLA) is obtained as a by-product, from stronger results.
In fact, as we show next, we hardly need more for present purposes.

Inasfar the reduction behavior of proof-terms is concerned, A!, the
d—free part of Ay!, is an inessential extension of A. One can check
easily the following

9.23 Fact.

SRLAtY <(==> SHLAl.

£731 L7313



e ] : Détour—elimination

Froof., (As expected, A! has types/propositions from LIz, ¥1.) Fix
a valuation/interpretation # of the W variables/{terms of A! in
Term{ X1, as ever. Define then a mapping

¢(...2°% : TermfA!l —> Terml Al

with (a)° = a, for all a € Terml Al and also ({u.a>® = Ax:A. (ar°,
(fL£l1)e = (£)°t*, for an appropriate types/proposition A [set,

e. g., A= 1 2 l, for instance, or whatever else, compatible
with the chaoice of #], such that

¢ }_2\’1 a =3» b ==> ¢“ {"A ae =» bo,

¢ where ¢4 is obtained from ¢ by valuating the variables via #.

' (There are such °’'s [axercisel.) This shows SHLA!l <== SRLAl. The
£ converse is immediate: indeed, A is a sub-system of A!, w. r. t.
reduction behaviors. [NB: Of course, a Jirgct proof of SNLA!l is
also possible. Adapt, e. g., any one of the SN-proofs appearing
in [van Daalen 19801, to the case in point.l. 0O

9.24 Remark.

So, in a sense, A! is /ot more than the ordinary typed
d-calculus, in its "extensional'” version, i. e., the Curry
"functionality theory”. Actually, A! would essentially
correspond, after formalization, to the so-called "theory

of generalized functionality” of H. B. Curry and J. P. Seldin
({Seldin 19791, [Hindley & Seldin 19861, 16, {Seldin 19871.)

The situation described in the above does not change too much for
i—extensions of A(!>. In other words, one retrieves the same "level
of SK-proof-complexity’.

i We show this next, by exploiting a well-known "provability-only”
o result for HQ {(due, in part, to Kolmogorov [1925], Glivenko [1928]
for H and to Gdodel [19331, Gentzen [19331, [(Kuroda 19511 for HQ;
cf. also [L8b 10761).

Note, Specifically, this is a consequence of the familiar

£ @ “"double-negation” translationd(s) 71 : CQ —> HQ and says that
o R CQi- A <==> HQH# A, for all "negative” formulas/propositions
4 A in LID,¥]. (A is "negative” iff all propositional atoms P
o of A occur only '""negated” in 4, i. e., in sub-formulas of the
i form P o l.)> For "provability-only" details, see, e. g., the
vl recent survey of [Troelstra & van Dalen 19881, I: Chapter 2,

3.6 and 1I: Chapter 2, 8.5, for a historical comment.

£741 L7741

£
%
s
#
=
i
H
b




W

[ |

Rarlznieimid

& S Y
[

<

10 Lifting, hyper-reductions

10. "Lifting” and hyper-reductions. In proofs of SHIiAg(!>1l, it is
- technically — more convenient an approach to manipulate slightly
stronger notions of reduction than the standard ones.

Such notions are obtained by "lifting” B{-dé€tours via extensionality
assumptions., (Cf. section 7 for an analogous strategy, as applied to
Bi—conversions.? |

Hyper-Bi—reductions, type-normality. In the sequel, we isoclate the
"complex” B¢-notions [B¥zl, [B#Y¥] from the remaining ones and "1lift
them up” to appropriate hyper-notions of Bi-reduction [PRE21, [RI¥1,
resp.

The "lifted"” notions are intended to eliminate "complex" jF-détours ’
from p-terms no matter whether they occur or not in particular
subterm-environments which would make them "ready-for—-evaluation”.

For the class of Ag(!)-calcull of concern here, the hyper-notions
are as fallows:

10.1 Definition.
Basic hvper-Bi-reductions.

¢ x : (ASBY— 1 b+ cfx3 ¢ 1

where ¢'{{Xo, %] E clx:i=xz: (A=B) . x, (Zzx2 3.
Firgt-order hyper-8i-reduction. If u is not free in cix3,
L x ¢ Fu.,Aful>— 1 + cfIx? @ 1
B Y ) ! —m e e e e e e e e .
¢ b+ gx: (Wu AEuld—.cIx] =2 tu. x4 ful.c'fu, %3 [: ¥u.Aful 1l
where c'fu,x:] = clxi=xz: (¥v.Alv]).x, (z[ul> 1.

10.2 Definition.

AP{(t) is defined as Af(t), except for the fact that the
primitive (contraction, reduction, etc.) rules (B3, (BIW
are replaced by the "lifted” variants ("™ggz), ("8d¥) resp.

10.3 Remark.
Note that the stardard notion of reduction of AP ) is
ARG = [BoAIlaaAIlYRIIInyl (UBY1iaY]l), where [YB¥l stands

for [BYTILRILILTRIDII"B$Y]. This should not be confused with
the "pure” hyper—notion [»By21l"BI¥].

L 75] L751



i
j
!

-

10

10.4

10.5

12

(&)

10.6

10.7

Lifting, hyper-reductions
Notation.

[PRHl = ["RBISILYREYY is the standard " purs” hyper~notion
of Bi-reduction for (relative to) LI, ¥ in ARdQ).,

Definition.

A p~term a is type-normal 1f every subterm of a which is a
i—abstract #x:A .afxl is such that A is atomic, viz., either
a propasitional constant (T or 1) or an atomic proposition
Plu,,...unl.

The type—normal fragmemnt of Af(!) — denoted hereafter by
THAE(!Y) - is the restriction of Ag(!? to type-normal p-terms.

Naotation.
Terml ™A (131 is the set of type-normal p~terms In AmgdD,
Remark.

Certainly, Terml ™™AF(!>1 is the set of type-normal p—terms

Iin Xfd), as well, and "™AJ(!) is the same thing as the
restriction of A™§{!) to type-normal p-terms. One should,
however, note that ™AY(!) has a standard notion of reduction,
given by Agdd) - (A BIDIIREY]) (equivalently, by "Ag> - [*B¥1,
of course!). That is, ™AJ(!) can be obtained from AF(!> [(or
from A"¥(!), for that matterl, by restricting the set of
(well-formed and "correct") p—terms to Terml ™A{(!>] and by
leaving out the rules (8¢§2) and (B¢¥) [(resp. the "hyper—-rules"”
"By and (™B¥Y>1, that would have, anyway, no effect in a
type—normal environment.

Clearly then, the "pure' hyper—notion [*B{l] is meant to reduce
p-terms to type-normal forms, relative to the provability languags
LL o, ¥1,

10.8

10.9

[76]

Remark.

The relativization—proviso points out to the fact that, for
a more complex primitive setting (as regards the underlying
provability language; in presence of a primitive &, for
instance), an analogous "lifting"” should be performed on the
remalining By—notions of the associated proof-language.

Remark.

Let + stand ambiguously for derivability in AF(¢> and let

Fn stand for the analogous concept in A g(!>, whereas =» and
=2 are the associated standard reduction-relations. Then
for all a, b € Terml Ag(4d1,

¢ Fa=2b ==> ¢ bya =2 b

[76]



» i
]

10 Lifting, hyper-reductions

Thig follows immediately, since the rules (Bgm> and (BI¥>
resp. are derivable in A™g!. Moreaver, if = and . are the
associated equality (conversion) relations then an analogous
statement can be shown to hold for = and = and this can be
even strengthened up to an equivalence

¢ ta=>b <K==> ¢ by a « b,

for all a, b € TerntAg(!>]1. Here, the <{(==-part of the statement
can be obtained by appropriate uses of extensionality properties
of = in the #-free fragment of AF(l).

10.1C Lenma,

SNLAT (2] ==> SKLAF(>1.
Proof. By 10.9, viz., the part applying to reduction relations. 0O
10.11 Remark.

Actually, 1f we decide to translate entire reduction—sequences
from AF(!) into A" {(!), then the applications of the rules
(Biz and (BE¥) resp. L[in Af(!>] become instances of (B2
and (BY> resp. {in A™¢()>1t This amounts to the fact that,
for each p~term a, with ¢ +a : A [in AF(!>]1, and every path

p in a LLA{(!),al, there is a uniquely determined p.. in the
tree LIA™{(1),al, such that

(1°) every détour that is not a (Bfo)- or a (Bd¥)-dé&tour
is eliminated exactly in the same way in bath A§dl)
and A™§(!) and such that

(2°1) (Byod—détour—eliminations [in A§d!>] are replaced by
carresponding (foX)—dé&tour-eliminations [in A™{d)1]
and

(2°2) (Bi¥>)—-détour—-eliminations [in Ag(!)] are replaced by
corresponding (B¥)-détour-eliminations [in A™{(iD1.

Moreover, the form of the détours involved in translation
can be established explicitly [ exercisel.

Ve show next that the "pure” hyper-fi-reductions are well-behaved,
Strong normalization for hyper~8§-reductions. Intuitively, it is
already clear that hyper-Bi#-reductions decrease the complexity of
the ¥-d&tours. So, the following fact is as expected:

10.12 Lemma.

SRLANg ), [»B¥11.

{771 ' £771



i F

¥ j

10 Lifting, hyper-reductions

Froof. For ¢ - ¢c 1 C in A™{!), let h(c), the height of <, be
defined inductively, as follows:

(0> if a contains no f-abstract as a subterm then h{(c) = 0;
else
(1> 1if ¢ = ab then h(c) = h(a) + h(b,
(2 if ¢ = 2Ax:A.a or
32 if ¢ = alt} or
4> if ¢c & tu.a then h(c) = h(a>,
5 if ¢ 2 ¥x:C.afx] and
BGLY i£fC =T, L or Pluy,...u,nl? then h(c> = h(ad + 1,
(52) 1if C = A 2 B then h = 10 2z h{(c), where
C E AXolA. X :B.afxi=Xxz: (ASB) . x, (Zzxa) 1,
(63) if C = ¥u,Aful then h = 2"<e«> yhere
c E lu, §X,:A-Ivi=ul.alx:i=Az: (¢v.AfvE) . x, (z[ul> 1,

Let H = [™B¥l, for short. Then, one can check immediately that
the corresponding one-step H-reductions are such that

¢ F aw»y b==> h(a) > h(b),

i. e., one-step B-reductions reduce strictly the complexity of
p—terms, inasfar h is concerned.

Eventually, on every hyper-fif-reduction path ¢ from a, in the tree
Lil™R¥l,al, all subterms ¢ of a that are also hyper-8i-redexes,

i. e., of the form ¢ & ¢x:C .affxl, with C = A 20 B and/or C & ¥u.A
are replaced by p-terms containing as subterms only ¢-abstracts

c¢' = gx:D~.a'lxl, where D is less complex than C (e. g., C has
either at least an extra o or at least an extra ¥). Clearly then,
on each branch gu.. € LIL™B{l,al the process stops with a type-
normal faorm. 0

This shows that type-normal forms do always exist (as limit points
af "By-reduction paths in "™Bg-reduction spectra of p-terms)!

Confluence for hyper-f{-reductions. In order to insure wricity of
type~normal forms, we prove first a stronger result, viz. that
hyper-Bé-reductions are confluent.

This is shown by the Rosser/Tait/Martin-L8f "residuation” method.
Using the general proof-pattern, we need a "parallel” version,
wH := ™RY, say, of H := "84, viz. a (formal) relation .+ on
Termt A¥(!)]1 such that w>+ and the standard notion ,.~» of hyper-
f¥-—contraction have the same transitive closure (here: =»).

The required result follows then by the technical Lemma 9.16, on
transitive closures, as relativized to Ag(t), viz.:

If r and ™r have the same transitive closure as relations
on TermfAg(i)>1, then CRLAZ(!),™r] => CRLAZ(), ],

£781 [L781



!
i3

10 Lifting, hyper-reductions
Formally, we equip A<™>§(!) with a relation - = ™B{ on the
set Termi Ag('>] and use the resulting formal system, A™RI)D) :=
C Ag(t), ™Ry ) as a technical tool to prove CRIASP> ), ™" R{1.
The formal system A™R§(!) is given by the following rules:
10.13 Definition.
(=Pa Reflexivity: ¢ Fa : A==>¢ F au a . A
(=B i) : Pagic parallel hyper-RBi-reduction.

¢l x : (ADB)~ 1 F CyxX] v c=lx] : 1L

¢ b X (AsBY . CrIx] mir? AXXolA. dx4:B . ' [%X0,x: 3 [ A

u
=z

where c'{xa, X1 & czx:i=xz: (ADB). X1 (Zzxa2 1.

(B EY): Firgt—order hyper-i-reduction., If u is not in FVol(ciixD,
i1 := 1,27,

¢l x ¢ Yu AfulY— ] b i ExT s c2ixd ¢ L

_____________________________________________________________ ,

¢ b+ ogx: Wu Afuld—.cqh Ix] i tu. =i A~ ful.c'fu, %3 [: ¥u, Afull
where c'ffu,x,} 2 calix:=2z: (¥¢v.Afv]) . %, (zlul>].

Compatibility.

¢y Hf g ¢ ADB
¢ F ay - a= : A

L T e D .
¢;¢- - fa,; - ga= [: Bl
¢L x Al + affx] - bIxd B

o O ) 1 e e e e e e e e e R
¢ - axtA.aflx] W 2x A bIx3 : [A o Bl
¢l x ¢ A~ 1 + allxl] - biIx} : 1}

Loy e s

¢ - dx:iA-.alx] wrr ¥x: A bx3 [: AY.
¢y F £t U
¢ F £ wi T g 1 ¥Yu.Aful

LS e y {u not free in £, gl
C1¢2 - fLE] o gltl [: Afu:=t]}]

¢ F tu.aflull - 'u.blful [: ¥Yu.Al.

L791 {791



€ 10

10.14 Definition.

The main consequences of this are,

° Froof .

For each p-term ¢ € Terml Agd¥>1],

144D
(D
2
(6D
4>
5
B
B2

53>

For all p—terms a,

if

c = X then ¢ = x,
if ¢ = ab then ¢ = (at**>) (b™m),
if ¢ = AxiA.a then ¢ = Ax:A. a™",
if ¢ = altl then ¢~ = (am )l tl,
if ¢ = tu.a then ¢ = tq.a"r,
if ¢ = gx:A—.aflx] and
A=T, 1 or Plu,, ..., unl then ¢ = §x:iA—.a™",
ifC=z= AS B then ¢ = AxXoi A, §x,:B~. &
where a' = at™ [x:=Xz: (ADB). X, (ZzXo) 1,
if C = ¥u.Aful then c™ = tu, §xy: A [v:=ul.
where a' = a» [[x:=xz: (¥}v.Alv]).x, (z[ul> 1.

CRLA™H (1), =841,

v

10.17 Remark,

From 10.15. O

b € Terml A1,

Lifting,

the p—term

10.15 Lemma (Hyper-Bi-residual inversion lemma).

hyper-reductions

¢ is defined by:

Froof., By induction on the [subterm-1 structure of a.

a u—+ b ==> Db

O

H)"” arr,

10.16 Theorem (Conflusnce for parallel hyvper-Bi-reductions).

The relations o+ and ,.~» have the same transitive closure
(on Termi A{(¥>1), viz. =

CREAZ (), "B Y.

o Proof.” From CRLAN YY), ™R 41 [10.16],

as expected:

10.19 Carollary (The “Church-Rogsser” theorem for

ST
L i
s

e

Froof, By tiling the plane,

[801

on Terml AgCt>],

APF) - oa,

for some ¢ € Terml Af(!>1.

from CRIATE (), "Ryl

i.

10.18 Theorem (Conflusnce for hyper-Ri—-reductions).

by 10.17 and 9.16. 0O

rRi—eguality).

e.

H= az ==> ANy b as; =¥ ¢,

»

Vhere o= and ~=» are "fg-eguality and hyper-fi-reduction

for all p-terms a,, a= € Terml Ag(t)1,

10.18. 0O

£801



g - 10 .Lifting, hyper-reductions

10.20 Theorem (Unicity of type-normal forms.
UNL D) ,"B71, 1. e., type-normal forms are unique up to ZFo.

I

Proof. From the "Church-Rosser” theorem for "fi-equality 10.19. O

10.21 Corollary (Non-triviality of TBi—eguality).

Comsl Ar#(!>1; i. e., hyper-Bi-conversion is not trivial.

Frosf, From 10.20. O

10.22 HNotation.

0
i i
vl

In view of 10.20, we can write *~(a) = "the type-normal form
of a", for every a € Terml Ag<t>1.

e

10.23 Remark.

In the end, the intuitive meaning of the (joint) property

Toow

- SELrF),mB4d] &'CR[lhd(!),“ﬁgl & URLAr g (1), R4l

is that hyper-fi#-reductions/expansions amount to a systematic
abbreviation technigue, applicable to the type-normal fragment
TNAY(Y) of AP (), where the "superscripting looses its
proper meaning. In particular, translations from A™§(1)

to T™NAY(!) respecting hyper-Bg-reductions should be also
"rigid” (or deterministic, in nature) and define a *faithful”
surjection *™ : ANF() —=> TNAY(Y), say, preserving TMA§),
in the sense that *~(Ar#(t)>) = "™¥AF(). This fact will be
implicitly exploited next.

£811 [81l




St

R -

11 ’ The negative translation

11. The negative tramslation ™ : A"§(!) —> A(Y), The official
"typing” statements (formally: the t-statements) of AP E )
are triples of the form ¢ = (¢, a, A).

The fact that % "holds” or that ¢ "is derivable” in A<™>{C1), 1i. e.,
that A<™>g(!) - ¢ is, usually, written as ¢ + a : A, understanding
implicitly that the turmnstile ”+" bears a (hidden) "relativization"-
subscript "X<e>4),

So, alternatively, the calculus Af! can be viewed as a sef of
t-gtatements of the form ¢ = (¢, a, A) such that Ag! - .

Conservativity of t-statements over §-free fragments. Ve note first
a conservativity property of the proof-syntax of Af(!)-calculus.

11.1 Notatian.

Let "M, "=3»" and "=" resp. stand for derivability, standard
reduction and standard conversion (or equality) resp., in
A<h24(1), whereas "Facy>", acy>=?, ac1>= resp. denote the

analogous notions in the corresponding #-free fragment(s)
A(!). FNote alsa that "' has the same meaning in AP §(!) and
Agdtd. But, 1if necessary to distinguish betweeen =)', =2
resp. in A{(!) and the their "hyper"-counterparts in Ar§(!),
the latter will bear a subscript "H', say.

11.2 Thearem (Conservativity of b+  over bacys).
For all p-terms a, b € Terml A¢(!>! and all contexts ¢,
(¢ +-a : A & (a is §-free) ==> ¢ Facia a ¢+ A,

Froof. By induction on the structure of a, using the appropriate
"subterm correctness” properties [(3.151. [}

The negative translation! heuristics. We define next a translation
Mo AR —=> A, called negative translation, from t-statements
of AR{(!) to (¢-free) t-statements of A(!), such that ™

(1°) preserves proper A(!)-détours ("faithfully”) and

(2°) translates proper ¢-détours into appropriate A(!)-détours.
The negative tramnslation won't, however, preserve APty -typings.
Actually, we shall see that API(!) + 9 ==> A1) F N(p), for any
"typing” statement ¢ of Af), i. e., where ¢ = (¢, a, A>, the
"negative” image o™ = (¢MN, a™, AM) of ¢, for ¢ + a : A, is such
that ¢™ F a™ ¢ A™ [in A g(!) and, therefore, in A(!)> by the

Conservativity Theorem 11.21, although A and A™ are, in general,
(syntactically> distinct propositions/types.

[821] ‘ (821




M

:
o
o

y
B

11 ' The negative translation

The relevant information is, in this case, extracted from the
fact that, with notation as above, one has

¢ +a = b ==> ¢N§")\(!) a";.c_.)=> bN,
for all p-terms a, b € Terml Ag¥>1,
11.3 Remark,

This is the essence of the "double-negation interpretation”
of Kolmogorov-Glivenko—-G8del-Gentzen—Kuroda, as expressed for
a praper proof-setting and abstracting from any irrelevant
information. A! is the same thing as the proof-part of he
{o,¥]1-fragment of Heyting's first-order logic HQ, but this

is completely irrelevant for proof-theoretic purposes.

11.4 Convention (local).

For the rest of this section we assume that the symbol T is
eliminated uniformly from propositions/types of L[3,¥] and
the X{(f) (! )—syntax, by setting T = [ 1 o 11.

{KB: The present convention is part of the definition of
NM(. .. below. Otherwise, we keep referring to L[z, %1 as
the wrnderlying provability lamyuage of AFda).1]

11.5 Notation.

Let ¥ != Um.1:::..,Um.n be (possibly empty) sequences of
U-parameters and P; = Pyful (1 { J < m) denote the proper
atomic propositions/types in LI{z2,¥]1. Here, in the limit
case, the propositional variables are the P;'s with u empty.
Further, in order to avoid ambiguities, the propositional
atomic constants T and ! will not count as (proper) atomic

propaositions. )
11.6 Remark.

Une can define, somewhat redundantly, three simultaneous
substi tution operators (on contexts, propositions/types
and p—~terms), all denoted by "...[...s5:= . .5...05<m" in

an ambiguous way, in what follows.

(1> If ¢ = [x3:A4)1«nn 15 & context with ¢ + 9, for some ¢, in
AcP24t), and if P; (1 ¢ j < m) are the atomic propositions/
types occurrig in the Ai's, then ¢7 is the context [x:i:Bili<r.,
where Bi: 2 Asf[Psy := (P53 D) ls<m, for all 1 < i < n.

(2 If A is a proposition/type in L{3,%] such that the atoms P,

(1 €3 < m) are all the atomic propositions/types occurrig
in A, then A™ is the proposition/type AfP,; := (P32 L)1s<m.

{831 [ 831




H 5
[ |

1t

3

11.7

The negative translation

If a is a p-term in TermtA<"?>{(!)] and the atoms P; (1 < 31 < m
are all atomic propositions/types occurrig in a, then a~ is
the p-term afP; 1= (P32 L)I3i<m:

One can make this slightly more general, using a single ftyvpe
of substi tution operators. Before doing this, note that

Lemma.
If ¢ -a : A (where ¢ is possibly empty), and if P(ad, PA)

resp. are the sequences of atomic propositions/types occurrig
in a and A resp. then Pla) £ P(A).

Froof, By induction on the derivation of ¢ + a : A, Obviously,

only

11.8

11.9

L

(V=)

3

{841

the rules (oiX) and (zig) do actually matter here. [3

Notation.

Let ¢ - a : A, with ¢ = [x;:1Ay, ..., EZniAnl possibly empty,
P = ( Pk du<m be the sequence of atomic propositions/types
occurrig in ¢ and A4, ..., An. Let alsao, for convenience,
sub(...) stand for the (simultaneous) substitution

Py = (P D) Es5<me

Then, clearly, subd(¢> - sub(a) : sub(A), by the appropriate
substitution rule (&),

Remark.

Assume ¢ F a : A, with ¢ = [xy:48+, ..., XniA,l possibly empty.
If P(¢) is the sequence (P;id; i« 0f atomic types/propositions
cccurrig actually in A,, ... ,A,, and ¢' = [X4:B.,...,%x:Bnl,
where B: & A fP; = (P32 DIljcp, for all 1 < 1 < n, then

¢” = sub(¢), as well.

Analogously, if A is a type/proposition, with P(A) the
sequence (P;3)i«<q 0f atomic types/propositions accurrig
actually in A, and A' = AfP; := (P32 )Jls5<aqs then also
A' = AT = gub(A).

In general, this notational policy allows to have, for all
p~terms a, all contexts ¢ and all types/propositions A,

¢ Fa: A== gsub(d) = ¢~ + subla) # a~ : sub(A) = A™,

since, if P{(a) is the sequence of atomic types/propositions
occurrig actually in a, one has always P(a)> € P(A), by 11.7.

[841



f””
.

N
-

11 The negative translation

Negative atomic propositions, The types/propositions A of (I3, ¥]
can accur actually in p-terms a € TermlAg(!)] either

(1°> within the scope of A-abstractions, i. e., in sub-terms

c E Ax:A. . alx? or

(2°) within the scope of {-abstractions, in sub-terms of the

form ¢ = gx:A-.afx].
11.10 Definition.

(1> For any type/proposition A = [C 3 1I, an actwal occurrence
P of an atomic proposition is said to be positivesnegative
In A, according to the following inductive clauses:

(1°) P is negative in P o 1l [NB: P is atomic!l],

(2°> P is negative in A[P} = B[P} iff it is negative
in BEPI,

(3°) P is negative in ¥u.AfPJIful iff it is negative in
AfPRful,

(4°) else, P is pasitive in A.

(2) An occurrence of an atomic typesproposition P in a p-term
a is negative in a if it negative in some types/proposition
A = A o 1, accurring within the scope of a g§-abstraction, in
a subterm ¢ of a, of the form ¢  §x:A-.alx], else P is said
to be positive in a.

11.11 Remark.

(1> Let P be an atomic typesproposition. If P has a negative

occurrence I in A and A' = AfP:=(Pal>] such that [ goes
into [F 2 11 in A', then the corresponding occurrence af P
in A’ is positive in A’'. (Note that f...:=...] can be

understood here either as a substitution operator or as a
replacement aperation, applylng to the indicated token-
occurence FF of P. The statement holds in both cases.?

(2) Let A and P be as above. If P has a negative occurrence P

in A then the matching occurrence [ of P in A™ is positive
in A”. '

Froof. (1) By induction on the structure of A. (2) From (1) and
the definition of (...>7. O

11.12 Lemma.
For all p-terms a € Terml A§(!)]1 and all contexts ¢,

¢  a ==> a~ contains no negative atoms.

[ 851 ' [ 85]



11 The negative translation

Froof., The hypothesis ¢ - a (4. e., "¢ + a : A, for scme A") is
meant to insure that a is "correctly typed”. Note first that the
substitution (. ..)7 does not introduce new negative atoms.

Let I be a given negative occurrence of an atomic type/proposition
P in a. So, there is a subterm d = #x:A~.bIx] of a, such that P
occurs negatively in A—. By induction on the structure of A,

one has:
(1°) A is atomic, so A 2 P (the cases A = T, A = } are excluded
by assumption). Then d&' = (d)7 = gx:P=. (bIx1>~ and this very
occurrence of P in 4’ (within the scope of §) is now positive
in 4.
(2°) A = [B o0 Cl, so P occurs negatively in C. Then 4' & (@)™ =
o gx: (BoO)™ . (bEx]>™ = gx: ((BY7"3(C>™) ., (blx]>~, whence the chosen
f occurrence of P should be positive in (C)7, 1. e,, alsoc positive
in 4'.

(3°) A = ¥u.Bful, analogously. 0

11.13 Definition.

A Bd-détour of the form d = gx:A—.afx] is

(1°) atomic, 1if A= T, L or an atomic type/proposition P,
else it is rnon-atomic or comples,

& m
i 1
Sertmenind

2°) eritical, if A contains negative occurences of
atomic types/propositions, else it is momcritical.

11.14 Remark.

i . The critical atomic By-détours are therefore of the form

o d = gx:A~.alx], with A= P [ = Plul 1, for some (proper)
atomic types/proposition P [here, P is negative in d4dl, whereas
the non-critical atomic détours are either of the form

d = gx:T~.aflx], or of the form d = gx:1-.alx]. Fote also

that the complex détours d = Fx:A-.aflx], with A = P~

e L =[P 3 }11 1, (1. e., of the form d = ¢x:P=.alx], where

P= = [P = 11 = 11, as usual) are non-critical.

. So, if ¢ b+ a : A, the p-term a contains critical B{-détours iff
o a contains negative occurrences of atomic types/propositions.

11.15 Corollary.

If ¢ + a then a” contains no critical Bi{-dé&tours.

N Proof, By 11.12, (. ..)”7 eliminates the negative (occurrences of)
; propositional atoms from a. [

(861 £ 861




11 The negative translation

The standard negative translation We can now introduce one of the
possible versions of the negative translation.

11.16 Definition.

For p—terms ¢ in TermlAg(!21, the p-term (c)* is defined
inductively by:

ey dif ¢ E x then ()* = x,
{1°> if ¢  ab then (c)* = (a*) (b*),
2 if ¢ = AxiA. allx] then (»* = Ax: A, (alx]>*,
(3°) 41if ¢ = altl then «€)* = ((@a* [ t],
4°) if ¢ = tu.a then (c)* = tu, (a)*,
(5°)y 1if ¢ = dx:A—.alx]
and :
& 5°1) if A= TIL = L 211 then <()* = Az: ).z,
[ (5°2) if A = |} then (¢c)»* = (A)r*

where d = aflxi=Xz:}1l.z3,
(53> if A= PIL = Plul 1 +then (c)*
where dixa] & alx:=xz:P~.zxo1,

1

AXo:P. (dIxold™,

A (5°4) if A = (B=C) then (€)* = AXo:!B. (Adfxa307*,
where dxel & dx3:C.aflx:=Xz: (BxC).x, (Zzx0 1.

“n (5°5) 1if A = (¥v.BIvD then (©)* = ftu. (dlul>»*>,
where

dful = #x,:Blul—. allx:=z: (¥v.BIvD).x: (zful> 1.
! 11.17 Remark.

Sa, for g-free p-terms ¢ in Termf A(!)1, (c)* = ¢, Similarly,
for type-rormal p-terms ¢ in Terml Ag(t>1, (c)* = ¢, 1f ¢
does not contain atomic Bg-détours (1. e., of the form
gx:A-.aflx], with A= T [ & J} o1, here 1 or A = | or A = P.)>.

[A—

11.18 Remark.

For all practical purposes, one could have used a restriction
af (...)* to a mapping (. ..)* given as follows: for p-terms
¢ in TermtAg(t)l, (c)* is a p-term defined by

1 Q> c E X then (¢c)* = x,

1 (1°)> c = ab then (c)* = (a*) (b"),

h (29> c = Ax:A.alx] then (c)* = Ax:A. (allxI)*,
3% c = al tl then (¢c)* = (a"™)[ €],
(49> c = fu.a then (¢)r* = tu. (a)*,
50 c E gx:A".alx] and
Bl A=TI0 =111 then ()™ = Az i.z,
(5°2) A=} then (c)* = (alx:=Xxz: L.zl>»*™,
(5°3) A= P then (C)* = AxXo:P. (Adlxc])™,

where diixo] = alx:=Az: P, zxo1.

£871 £871l




11 | The negative translation
11.19 Definition (The negative translatiom.

For any statement ¢ = (¢, a, A) af AR{(t>, ™ is defined by

M = (¢™, a™, A™M), where
(1°) ¢ = ¢~ [ = gsub(d) 1,
(2¢) AN = A7 [ = gub(A) 1 and
(3%) a™N = ((+oa)7)*,

11.20 Remark.

It is easy ta see that ™ : APHt) ——> X(!) is a well defined
mapping from t-statements to t-statements.

Indeed, the terms of the form ¢ = *"(a) axist, by SKL"L{],

and are wriguely degtermined, by confluence for hyper-fi-
reductions. Moreover, CR[™BF] implies that the actual strategy/
path we might have chosen in order tao reach a type-normal form
is completely immaterial (the result must be, anyway, the
same). This situation is - clearly - not affected by arbitrary
applications of the (simultaneous) substitution operation
oo™ 2 L IPy:=(P3ol0Tcs<m>) [for all atomic Py in cl.

The p-terms of the form c™, with ¢ £ *"a, can possibly contain

(1°) praper A(!)-détours and/or
(2°) non-critical By-détours 4 = ygx: A, alxl.

In the second case, one can have only the followingqsub—cases:

i (2°1» atomic Bg-d&tours such that
(2¢11> A =T = } o 11 with (d)* = xz: 4.z, or
ey (2°12) A = } with (@)* = (afx:=iz: Ll.z1>*,
.
et (202> non-atomic Bi-dé&tours such that
(2221 A = P~ = P o }l with (d)Y* 2 Axo:P. (elxald™,

7{ where ellxol = dx.:Ll—.alx:=xz: (Pal).x (zxa) 1.
Sa, clause (5°4) and (5°5) in the definition of (...3* would
never apply, whereas clause (5°3) applies only for A = P,

- This suggests the following simplification of the abave.

11.21 Definition.

Gl For all p-terms a € TermfAg(!), a=

Hi

((vma) ™y,

11.22 Corallary.

For all p-terms a € Term[lg(!)]; all contexts ¢, and all
propositions/types A4,

¢ Fa: A ==>¢N N = g AN,

£881 £&8l




11 The negative translation
Froof. By induction on the length of derivation of the premiss. [
11.23 Remark.

For all p—terms a £ TermlAg(1)1, ¢ + a ==> a™ is {-free.
11.24 Lemma.

The negative translation ™ preserves praper A(!)-dé&tours.

Proof. Let a be a p-term. Then a™ = ((*"a)™)* and (1) the operation
e (...) preserves proper A(!)-détours, since it contracts only
hyper—-gi-détours. (2) Arbitrary substitutions and thus (. ..>7

leave the result unchanged as regards the subterm—structure of

the détours, whereas (3) the operation (...)>* preserves proper

o A(!)—-détours, by the definition of *. Finally, the composition of

L praper A(!)-détour-preserving operations on p-terms does also
preseve proper A{l)-dé&tours. [J

iy

11.25 Corollary.

For all p—terms a € Terml Ag(}>1, all contexts ¢ and all
proposition/types A,

£ i
Ko

¢ - a : A == ¢N!";\<!) aN . AN,

N
Froof. By 11.23, for all a € Terml Agdt>1, a™ ig §-free. The result
follows then directly, by conservativity [11.21, from the fact that
¢ Fa: A ==>¢MFa™ o AN [11.221. 0O

11.26 Theorem.

Bt

For all p—terms a, b € TermlAg(!)] and all contexts ¢,
g € ¢}—a=>b==> ¢NE"A<!> a.NA(!)=> b,

1o Praof.s By induction on the derivation of the premiss in AfdlD,
i using 11.29, in order to insure the correctness of typing in A},

£ This yields, finally, the main result.
11.27 Theorem,
SHLA (121 <==> SHLA"§(1)1

Froof.” The ==>-part follows from 11.26. The converse (<{==) is
straightforward, since A(!) is a sub-system of A"§(!) with

¢ Faci> 8 acy>=> b ==> ¢ I a =» b,

? for all p-terms a, b € Terml A(!)>1 and all contexts ¢. [

[89l rael



11

The negative translation

11.28 Remark.

¥e have, of course, in the end, SNLAr#(!)1, and, finally,
also SNV 3], dtowt cowrt, by 10.10, since SRLAIY] can

be proved by standard methods (9.22, 9.23), However, the
main interest here is to show that, from a proof-theoretic
point of view, A<"?{{) is neither more "complex", nor less
"constructive” than A(!) could be. In other words: ths
elemantary proosf-theory of first-order classical logic is
at most ags “complex’ as A and at least as “constructive”
as A, the ordinary typed A-calculus!

11.29 Remark.

{901

The intuition behind the proof of SKHIA(IYl ==> SHIAT{()]
above is that we translate, by ™, entire standard reduction
sequences af A" y(¢) into standard reduction sequences of A(!).
Thereby, praoper A(!)-détours are translated verbatim, whereas
the proper g#—dé&tours are replaced by appropriate sequences of
proper A(!)>-d&tours. So, finally, ™ "prolongates” an original
reduction sequence g into a longer ', but entirely within
A(!). The fact that ™ "disturbs” the original typings is
immaterial for the proof-mechanism behind détour—-eliminations
and, in particular, for termination properties in détour-
elimination processes!

£901




Rmevanisimsd

Sz

L

1

1z Confluence

12. Confluence in first—order classical logic. We show, finally,
CRU™A LY, conflusnce for the typs-normal fragment of §!, by the
"residuation” {[Rosser/Tait/Martin-L5fl technique, using a structural
case—-analysis of parallel Ag!-reductions, as restricted to the set
Terml "™™A{!l. This implies, by 10.20, the property we are loocking
for, viz. URLAgY, yrmicity of normal forms in gt

Isolating parallel “NA{)-raductions. For technical purposes, in
the proof of confluence for CQ, one needs a "parallel" version of
the A§(!)—reduction rules.
12.1 Theorem (Farallel reductions).
The following rules, matching the initial classification of
the reduction rules of X¢! in the obvious way, are derivalbls
in X¥! (with the usual provisoes on contexts):
p-evaluation.

Bagic p-avaluation.

¢1}"a1=>az:A
¢l x ¢ A1l + DL2ExT =» balIxl : B

¢4¢2 F xiA.baIxDas =2 bzlxi=a=] [: Bl

il
[
I
[

GoMN) ! ——mm e s [x not free in f£4, 1

Mofdp: ———————— , [x not free in £4, 1 := 1,217,

Fiprgt-nrder pevaltation,

¢y Bt 1 U

¢ u 1 Ul F ayful = a=lul : Aful

¥l ——— , Lu not free in £;, 1 1= 1,21,

p-type-reduction.
EBagic p-type-reduction.

¢ x ¢ T 1 F ay0Iul =» axful : 1

[o1] {911



.
et

5 g
§
RES ‘,Z

=}

iz Confluence

(B gi)p: —————————————————————————————————————— ]
¢ b dxilmaqIx] =2 aixi=xz: b2l L 11
(C-l asy =% Qe A
2l x ¢ (ATSBY>— 1 F cq1Ix3 =% c=2Ix]: 1
Bid gt —— e e .
Ty F (gx: (AoBY~.chIxTla,:, =% dx:B-.c'IxT [: Bl
where ¢'[x} = celx:i=iz: (ADB).x(zax>1.
First-order p-tyvpe-reduction. 1f v is not free in <, Ix3 (1 := 1,27,
¢1 =t :: U
¢l x : (Fu,Aful> 1 b+ o3Ix] =2 c=fxT: 1
B pi ~mm e e e e

T3¢ B CExy (Wu Aful) e ExIXlt]) =2 gx: A~ Tui=tl.c'fx3 [: A'}
where c'[x] Czlix:=Xz: (¥u. Aful> . x(zft1>]
{and A’ Afu:=t]1.

I

p-compatibility.

¢, £ =g : A2B

¢24La1 =% an A
> e e
¢4¢= + fa, =» ga= [: Bl,

Froof. Easy, but making hard use of (v=»). [ Exercigse: For instance,
(pe3), follows from (uz), w3 and (r=»).1 [

12.2 Remark.

Note that, with the exception of (uz=), (43, the remaining
—2>—compatibility rules of Ag!, viz.,

&, (Lo, " Lbhasic rulesl,
pdy, (R%), : L first—order rulesl,

do already fit the "parallel” pattern of the derived rule
(pi) [p—compatibilityl above,

12.3 Definition.

Let >+ be the least binary relation on the set of Aj!-termns,
satisfying, muwtatis mutardis, the following conditions:

0 reflexivity!
$=) ‘ [basic rulel.

1 p-evaluation:

PV, N, D08, L[basic rulesl,
B, ¥ ) e, L firgt—order rulesl.

[ezl toz21



|
)
4
b

R

&

12 Confluence

2 p—type—-reduction:

BiTe, Bl e, t basic rulesl,

Biz) e, f basic rulel,

Bi¥e, U firgt—order rulel.
3 p—compatibility:

(a3, (B2, (L), { basic rulest,

(piy, Y, L firgt-order rulesl.

HNext, ¥ is called (rlassical first-order) parallel recuction,
The restriction af ¥ to basic rules is called pasic parallel
reduc tion.

Notation, In order to avoid possible confusions we write oft
(label: r+) for »-+-rules, where label is any one of the labels
listed above. E. g., ((2A:+*) identifies the (L3A)-rule for
. [NB: Note that "}'* and "»+" are used ambigucusly in the
rest of this section.]l '

12.4 Corollary.

For all Ag!-terms a, b, one has: ¢ - a >+ b ==> ¢ F a =» b.
Fronf,” By induction on the [length o0fl derivation of the premiss,
using 12.1. O

12.5 Lemma.
For all X§!—terms a, b, one has: ¢ +a -» b ==> ¢ + a = b.

Prmmf.§ By induction on the [length ofl derivation of the premiss,
using (i1, [ ‘

12.6 Theorem.

Let »» be the transitive closure of = (i.e., the least
transitive relation satisfying the conditions in the
Definition of »»+)., Then > = =» as relations on the set
of Jgt—terms. In other words: for all Xg§!—-terms a, b,
we have: ¢ - a 2 b <==> ¢ | a =» b.

Frogf., The (==>)-part is stated in 12.4, whereas, the ({(==))-part
follows by 12.9 and (T:=»). 0O

12.7 Remark.

Theorem 12.6 states, in fact, that » and =», (resp. —») have
the same transitive closure, viz. =» itself. So, the reduction
rules of AY! and/or its subsystems could have been formulated,
equivalently, in terms of appropriate "parallel” notions of
reduction »+. Formal proof-systems with a primitive "parallel”
notion of reduction are more informative in epi-thearetic
consglderations on proof-reduction.

[ 93] L 931



12 | Confluence
Befaore proving the main fact we should alsoc note the fallowing:

12.8 Lemma (Swubstl tution Lemma)d.

¢Lx: Al + a,0x] » b,Ix] : B
¢ F az > bz : A
(B:r*): e ————————— e s
¢ - a4y EX —8.23 - b] {{X:=b2B B
¢l u:: U1l + a;full > byful : A
¢ = t :: U
(suf TR ) e e e e e e i e

¢ - ayfui=t} > byfu:=t} : A.

FProof. In each case, by induction on the total [sum-1 length of
the derivation of the premisse(s). [0

Somgisy

Type-normal " residuals’” In A§!. We organize the "residuals” of
T™NL{! in a transparent way.

For a - otherwise standard - analogue of this, applying to the
ordinary "extensional” type-free X-calculus *A, see, for instance
{ Takahashi 19891, 3.1).

12.9 Definition ("TNAY! -regicduals’).

: ,
h i
[CRS—

For each p-term a € Terml ™Ayg!l, such that ¢ + a, for some
¢, one defines a® (”"the residual of a") by induction on the
structure of a {distinguishing among détoursl, as follows:

» (1> a ® x a® = x,

2°> a = ajé=
2°L» a 1s not a [BoAl-dé&tour a® = (a2,
2°2» ay = AxiA. 2o '
2°z21> a: is not an [asAl-détour af® = (ax)®RIx:=(az’®],

o (3> a = Ax:A.a,

L 3°1> a is not an [noA]l-dé&tour aF = AxtA. (a0 F,
(3°2> a, = aeX, x not in FV(ao) a® = (ao)F,

s 4°> a = gx:A™.a,

i 4°1> a is not an [na2fl-détour:

o 4°11) A=T a® = ix:l.x,

. 4°12) A=} a® = (a.)RIx:=Ax: }1.x]1,
: (4°13) A is an atomic proposition P aF® = §x:A~. (a.)F,
i 4°2)> a: ¥ Xao, X not in FV(ao) a® = (ao)F,

(5°) a = a,ltl]
8el> a is not a {B¥]1-dé&tour aR = (a)®L L),
5°2) ay £ !'u.éao
(5°21» a, is not an [a¥l-détour a® = (ap)™lu:=t],
N Gea2) 8o ¥ acolul, u not in FV¥Vlace) a = (aco)Wltl,
: (6°> a = 'u.a,
) (GLED) a is not an [n¥l-détour a® = tu, (ay)R,
G6°2> a; = aolul, u not in FViao? a® = (ag)®.

)
i
!
i

(941 Y [941




B
&
%

f
i

e

]
3
1
e

1
}
«‘:15

[

1z v Confluence

With this notation, the main fact behind the present confluence-
proof is contained in the following lemma.

12.10 Lemma (" Residual inversion).

For all a, b € Terml ™A{{!>], ¢ - a ¥ b ==> ¢ + b = (aY®,
Proof. By induction on the structure of a, distinguishing among
détours, in order to be able to use a sub-induction on the length
of derivation of ¢ - a > b in ™AF(!) [details in the Appendixl. [

12.11 Thearem (Conflusnce for classical proof-reduction.

CRL™™A§(t)>1. That is: for all p-terms a, by € Terml ™A{(I)1,
(1 := 1, 2), there is a p-term ¢ € Terml ™A{(!>], such that

¢ Farr by == ¢ F b — c.
Froof., Immediate, from 12.10. [
12.12 Theorem (The “Church-Rosser” theorem for classical logic).

For all p-terms a; € Terml "™Xg(4)1 (i := 1, 2), there is a
p-term b € Terml ™A {(!)1, such that

¢ - ay, = az ==> ¢ b+ a; = b,

Proof., From CRLTMA{(1»], 1. e., 12.11. O
As expected, this implies the following
12.13 Thearem (Unicity of X)) ~normal forms).

URL <TN2A 4101, |
Froof. For ™NMA{(): clear. Delete "TN" by UNLATH!,"B#1, [10.201. O
Indeed, the main interest was in obtaining UNLX{!), definitensss
of termination for the processes Iinvolvimg détour eliminations in
Agt (for this, we don't need a would-be fuwll CRLA{!l-property, for
instance?.
Moreover, we have also, once more,
12.14 Theorem (Consistency for classical proof-sguality).

Consl <T™>X 411,
Frogf. For ™Af!: from 12.13, as ever. The "TN"-restriction can be

deleted in view of SHLA™F!,"B¥1 and CRILA™{!,™By¥1, i. e., [10.12]
and [10,181.

[ 951 [ 951




Jon?
]

e i
!
3

il

12

Confluence

12.15 Note

[26]

Jean-Yves Girard has claimed oft (in conversation) "classical
proofs are non-confluent”, using an L-formalism (a '"sequent
calculus"?) and a loose way of talking about "reductions'"/
"confluence” in such a system, in order to support the claim.
In the present setting, this becomes TICREA{!,r(A¢!)>1, where
rxg!) is the standard notion of reduction of A¥!, as defined
on the full set TermtAyg!l (and "™ is negation in the meta-—
language). As noted before, r(Ag!) can be seen to arise from
the corresponding type-normal part r(™A{d!)) by svstematic
abbreviations, The related claim of Yves Lafont ([Girard et al.
19891: Appendix B, p. 152): "classical logic is inconsistent
(from an algorithmic viewpoint)” amounts to TConsfLX{!l in the
present setting and is, simply, false. WB: The Cons-proof for
Af! appearing in section 6 [cf. 6.23] does not depend on
properties of reduction in Ag!.

[ 961




13 Heyting proocf-calculi

12, Xft—definable proof-operations and the Heyting proof-calewli .
In this section we simulate the reduction and equational behavior
of proof-operations assaciated to conjunction (A, disjunction
v) and classical existence (35, Finally, an "extensional” wvariant
aof the Heyting proof-calculus for first—-order "intuitionistic”
logic is shown to be available, definitionally, in Ajy!.

"Intensional” conjunction in AEY and “surjective” Af-calcwli. In
a classical proof-setting without a primitive conjunction, there
are means of representing a "minimal” (’intensional”) conjunction
s, together with the associated ~—proof operations.

Recall first that we had, in welCQl, A ~ B := (A 5 B>~ [that is,
A~B= (A3 (B}l >}l 1l and Boolean n—proof-combinators FLA, B],
UFA,B,C3, Ps[A,BT (i := 1, 2) [cf. 2.17 (21 such that, for all
types/propositions A, B, C,

[ 1 +c BLA,B} : Ao .B 3 A~ B,

{ 1 e UEA,B,CT : A3 . B3 C o3 (A B O,

L 1 e BEA,BT : (A A B 2 A,

I 1 +c B2EA,BT : (A~ B o B,

where "E" was an "intensional pairing' operator, with "left! and
"right prajections” "P." (1 := 1, 2), resp., whereas "L was an
"intensional un—currying” (or "intensional splitting") operator.

Obviocusly, one could have had Af(!)-analogues of the above, as well.
In particular, one has some use for "partially evaluated” Xiy-forms,
corresponding to these proof-terms.

13.1 Definition (~A-proof opsrations).

(1> For all types/propositions A, B, C,

PIA,BI = Ax:A. dy:B. Az (A o B™) . zxy,

ULA,B,CT := Ax: (AD.B2C).2z: (ArB) . 2 (1la,elz]) Ca.slzl),
P, A, B] = Az: (AnrBY . 1,4.lzl),

P-TA,B] = Az: (ArB).2,.elzl),

where la.efzl = fz' A~ z0O0x' 1A Ay":B.z2'x")
and 2a.ulzl 2 dz':B-.zQx'tA. 27 ).

(2) For all types/propositions &, B, any context ¢ and all
p-terms a, b such that ¢ - a : A and ¢ b : B, set, in
cantext ¢, < a, b 2a.m = Xz: (ADB™) ., zab.

(3> 1f, moreaver, in the same conditions, ¢ - ¢ : A A B, set
in context ¢, resp.,

P4, Bl(c) 1= 1la.elizi=c]
p=LA,Bi(c? 2a.alzi=cl

gz’ A cAx* A Xy’ :B.2'x" ),
gz’ :B-.c(Ax':A.z" ).

HI

fe7l [871




s

L&

J

§,

13 Heyting proof-calculi

(4> For all types/propositions A, B, C, any context ¢ and all

p-terms ciix,yl, £, such that ¢[x:Ally:Bl + ciix,y3

¢ +-f£f : A ~ B, set, in context ¢,

Uc(f,Ix:Ally:Bl.cix, vy} := cix:=a,y:=bl>,

where (locally) a = 1la.elz:=c] and b = 2,4,slz:=cl.

13.2 Remark.

(1> For all types/propositions A, B,

[l x: AlJL yvy:B1HFLCCE ¥V 2o, F Az: (ADB).zxy :

L z: AA~AB]1 pP:IA,Bl1(z) & l1la.elz]

#z’ tA—. zOx' A Ay’ :B.z'x")

Hl

[ z : A~ B}

i

P=LA,Bl(z) = 24.slzl
gz':B—.z(Ax'1A. 2'>) «£=
¥z’ :B-.z(AX’tA. Ay’ :B.z' y'>

muT

<€

(2> For all types/prcpoéitions A, B, C, and any context ¢,

¢lx:AlLy:Bl + clix,yl : C

(3> Recall that K[A,B] =g¢ Ax:A.Ay:B.x and K'[A,B] =as Ax:A. Ay:B.y.

Then, for all types/propositions A, B,

[ 1 + (UfA,B,AD> (KEA,BI> =>» P.[A,BI1,
L 1+ (UFA,B,BI)K'IA,BI =» P=IA,B].

C and

A B,

It is then easy to see that type—assignment ('natural deduction"-
like) and "evaluation"” rules, analogous to Martin-L8f's [1984]

~~rules of constructive type theory [CST] are derivable in A§{l),
in terms of the families P[A,B] and U[A,B,C] of proof-combinators.

fIn order to have 13.3 (2)-(3) in CST-notation,

one must relativize
Martin-L8f’'s generalized/dependent types Ex:A.BIxl] to "constant

families” of types ( BIx] Jux:a (such that x is not free in BIxD

and define, as usual in this setting, A ~ B = Ex:A.BIx].1

13.3 Thearem (~—proof operations).

(1> A-awioms, For all types/propositions A, B,
PlA,B], U[A,B,C} and P,.[A,BJ, resp. have,
the same typing as the Boolean combinators

and P,[A,Bl (1 := 1, 2), resp. That is,
(P>: [ 1 +PEA,BI : A .Bxs( ~ B,
141 DI £ 1 +-UEA,B,CT ¢ Ao BoCoAABZC,
(P2>: [ 1 + PyEA,BT : (A A B)o A,
Pz): [ 1 + P=fA,BTI : (A ~ B)yz B.

[o81

C, the proof-terms
mutatis mutandis,
FPIA,BI, U[A,B,CT

[98]



13 Heyting proof-calculi

(2) Ar—gtratification. For all types/propositions A, B, C, and any
context ¢,

(nid: e s
¢ + PIA,BlIa){(b) =» < a, b >a.e : A A B
¢lx:AlEy:Bl + cix,y1 ¢+ C
¢ +-f: AAB
(A )t e e e e e e e e e
¢ + ULA,B,CIOAxiA Ay:B.olix,yI)f =% Uc(f,[x:AJLy:Bl.clx,y}) : C
¢ + f A ~ B
(hgqy): == e e s
¢ + P,EA,BI(EY =>» p.[A,BI(E> A
1 ¢ +-f: AAB
: (ABz) | e e e e

¢ + P=IA,BICf) => p=[A,BJ(f> : B.

(3> f-r—egvaluation. For all types/propositions A, B, C, and any
context ¢,

¢Ix:AILy:Bl + clx,y} @ C

¢ +a : A
,,,,, . ¢ +b: B
; (Bt e e e e e e e e e e s
¢ b+ (UEA,B,CI) (Ax: A Ay:B.cfx,yI)<a,b>a.a =»
=¥ Ual{a,bla, =, [x:1AlLy:Bl.clix,y}) =% cfx:=a,y:=b} : C
¢ + a A
¢ +b B
(B )t e e e e e e e e e e e e e '
¢ + P,[A,BI(PEA, BRI (&) (b)) = p:[A,BiKa,bra.u) => a : A
. ¢ +-a: A
- ¢+b: B
wd Bz | e e e ,

¢ = P=IA,BI(PEA,BlI(a) (b)) =» p=[A,BlKa,bda.s? =» b : B

4) A—compatibility. For all types/propositions A,, A=, A, B, and
any context ¢,

o (ALY 1 o e , L4 1= 1,21,

¢ = b'l =) b:z : B
g <E_>..’\): “““““““““““““““““““““““““““““““““““““““
X. ¢ - < A1y, b >A,B‘ =% < ez, ba >A.B : A A~ B,

FProof. Basy calculations [ exercisel. 0O

[99] £991




13 | Heyting proof-calculi

13.4 Remark " Suriective” extensions of Xit).

(1> However, we can not simulate a corresponding "extensionality”
principle for the pairing { PLA,BI, P,IA,BJ, P=I4,Bl 1 aboave,
e. g., the so-called "surjectivity” property:

(amd: ¢ +c i A AB==>¢ 1+ < p.IA,Bl(c), p=lA,Bl(c) >a.a R c,

fails, for R £ { =», = }. Indeed, if \~") could obtain in
Ag(!), one should alsc have, by the translation (...>F used
in the proof of 6.23, a "surjective pairing” in the "type-
-free"” calculus *A! and, ultimately (cf., e. g., the proof
e of 6.7), in the ordinary "type-free'" calculus TA. However,

: this contradicts a well-known negative result in A-calculus
(undefinability of "surjective pairing" in *X; cf., e. g.,
B [ Barendregt 19741),

(2> With conjunction primitive in the type-syntax — written as &,
for convenience, i. e., with a provability language L[3, &, ¥l
- and a "polymorphic” proof-term syntaw given, resp. by

. <a, b>, ’ pairs,

e . palc?, 1 = 1,21, projections,
resp., in place of the previous type-parametric notation
<a,b’a.=e, p1[A,Bl (1 := 1, 2), one could have defined thus

a proper equational extension pAg(Y), say, of Af§¢!), by
the following rules [replacing ~ by & and forgetting the
type-parameters from <a,b’a.s, paffA,BI, 1 := 1, 2)1:

t &-gltratification (&i), (&ei?,
e G—-wvaluwation: (B&i1), (1&),
s -compatibility: (p&:), (L&),

. i := 1,21, together with the following additional B i§&-rules:
» s pAf()-reductio (& type-reduction rules):

¢f x : (A&BY— 1 F bIxT : L
B 8 ) 1

¢ F p=(§x: (A&B) . biIx1) =» ¢x:B~.bIx:=Xz: (A&B).x(p=2>3 [: BIl.

Clearly, the swrjective proof-calculi pAg(!) are distinct
from A{(!) only inasfar reduction/equational proof-behaviors
are concerned {(namely, as induced by the rules &) and (B{#&.),
i = 1,21, resp.).

{1001 [1001



Rim il

gy
s ]
o :

i

13 Heyﬂing proof-calculi

(3) The main results of this baook trasfer to pAi(l), as well.
For instance, Conslpii(l!)] can be alsc shown by the methods
of section 6, using Consl TpAl instead, where Tpl is the
axtengional "type-free'" A-calculus with "surjective pairing"”
{(for the latter type of result one must solve "Scott domain
equations” of the form D~ [D x D1 = (D » D1, first). Also,
the proof of SNIpAi!l can use a "negative translation" similar
to that of section 11, together with a remark of [ Troelstra
19861, in order to reduce SR{pA(!)]1 to SEIA()]. Ultimately,
one has SKlpAg!l <==> GRLAl, too. However, with "type-normal”
appropriately defined, CRI™™pAitl cannot be, apparently,
agbtained directly, as in section 12; instead, one can use a
Newman—argument [9.211, showing "weak confluence” first.

(4) For a set of type-assignment rules similar to those of pAy!
above, see, e. g., the Gentzen MN-system for CQ-provability
appearing in [Prawitz 1965]1. The Prawitz rules are stated,
in fact, for a provability language with primitives L, o, &
and ¥. For “type-reduction', see mutatis mutandis, Prawitz’
Immediate simplifications {Prawitz 19711, 3.1.4, 3.2.4.4,
3.3.2.3 and 3.4,

(5) HNote that rules analogous to (&), [1i := 1,21, can be
already obtained for ~, and the Af(!)-definable pairing
t PIA,BI, P.[IA,BI, P=IA,B}I 1, discussed earlier, provided
one assumes -~ beyond the rules of Af(!) — an analogue of K&
for the family of triples L P[A,BEI, P,IA,Bl, P-[A,BI 1.

(6) Martin-L&8f [1984]1 derives an analogue of &4é&) fromAspecific
assumptions on "identity types” I(A). Such assumptions are
debatable in a clagssical proof-setting. Cf. also {Rezus 10861.

Classical disjunctions arnd exigtence. In a genuinely classical
proof-setting, there are several distinct ways of representing
"minimal” (or "intensional') wv- and I-proof operations [cf. 2.17
(3>, (9) above, for combinatory variantsl.

We had A v B Zg4y (A- A B)~ =2 (A- o B=)= = (A—- 5 (B~ o 1)) o ) =
2 ((CA 3 1> o (Bl 3l ol ol and Ju Aful 1= Glu, (ATuld>™~
L = (Yu. (Aful 3 1) = L 1. A convenient set of proof-operations

associated to v and 3 is as follows.
13.95 Definition Cv-proof operations).

(1> For all types/prapositions A, B, C,

JAEA, Bl = AxX:A. Az: (A~ A~ B2 . PIA~,B Iz (x,
J=LA,B3 = Ay:B. Az (A— A B . P=IA~, B I(z){(y),
DEA,B,CI := 2x: (AsBY.Ay: (ADC) . Az’ : (AvBY, §z:C.z'c,

where ¢ Z Ca,elx,y,2z3 2 PIA-,BI10Ox" 1A, 2(xx")) Ay :B.z(yy' M
and, as usual, A= = (A=)~ = (A =2 1) o 4.

£1011 f1011




13 | Heyting proof-calculi

(2) For and all types/propositions A, B, C, and any context ¢,

(1°)> whenever a, b are such that ¢ - a : A and/or ¢ Db : B,
set, in cantext ¢,

j+[A,Bla>
J=0A, BRI (b

Xz: (A~ By .zQx' 1A~ Ay’:B-.x'a),
Az: A=A By zOX' 1A Ay By by,

o

(2°) if ¢ + h : A v B, ¢Lx:A} I allx} : C, ¢Ly:Bl + byl : C
and falzl = Ax:A.zalxl, gelzl = Ay:B.zbiyl (where the
"intensional” pair <...,...> is relative to A—, B, set
in context <,

?2 Dc¢h,[x:A).afxT,[y:Bl.bIyl) := §z:C-.h{fallz],gelzl>.

6/ 13.6 Definition (I-progof operations).
(1> For all types/propositions Aful, B,

(1°) w[AT := tu.Ax:Aful.Af:¥v. CAfu:=v>—.flulx,
] provided v is not in FVu(A[ul),

£ (2°) TL[A,BY := Af:¥u., (Aful=aB).Ax: (Gu. Alul). z:B~.x(aalf, 2z,
] where aanlf,zl = !v.Ay:Aflu:=vi.z(fLvly>,
- provided u is not in FVL(B).

(2) For all types/propositions Aful, and any context ¢, 1f t and
the p—term a are such that ¢ -t :: U and ¢ F a : Afu:=tl,
set, in context ¢,

@ 3
Tt

[SHE—

L t, a 1o = 2f: (¥v. Afur=vI)>™ . fl tla,
where v is not in FVL(AfulD.
(3) For all types/propositions Aful, B, and any context ¢, if

the p-terms c¢ and afu,xl are such that ¢ + ¢ : 3Ju.Aful and
¢ u :: Il x: A1 + afu,xl} : B, set, in context ¢,

[ESasr—

Tel(c,lur: WIx: Afull.alu,x]) := §z:B~.c f£f=z13,

where fizl = (tv.Ay:Afu:=vl.z(affu:=v,x:=y]})), such that u
is not in FVu(B).

o 13.7 Theorem (v—proof operations).

(1) v-axioms. For all types/propositions A, B, C,

[ 1+ J.IA,B3 Ao A v B,
L 1+ J2fA, BT : B o (A v B,
[ 1 + DIA,B,CJH A>2C>s .BaCa A vEBoQQ.

{1021 £1021




13 ' Heyting proof-calculi

(2> v-gtratification. For all types/propositions A, B, C, and any
cantext ¢,

¢ - a A
(fiqa): e ,
¢ + J,IA,BICa) =Y j.IA,BI) A v B
¢ - b B
(Viz) ___________________________________ s
¢ = J=I[A,BI¢(b> =¥ j=IA,BJ¢(b) : A v B
¢fx:Al b+ afx] : C
¢Ly:Bl + byl : C
¢ - h : A v B
(WE) 1 e e e e e e e e

¢ = (DEA,B,CH) Ox: A allx]) Ay:B. byl (h> =»
=» De(h,{x:A). . alx],ly:Bl.bEyD> : C.

(3) B~v—evalwation, For all types/propaositions A, B, C, and any
oy cantext ¢,

¢lx:Al + afx} : C
¢ly:Bl + by} : C

o ¢ - f: A

i (BV]): _______________________________________________________ s
¢ = (PIA,B,CI) Ox:i A aflxDl) (Ay:B.biyl) (J. LA, BIEY> =%

""" =» Dec(j,[A,BRIEY,[x:t A . allxd, Ly:Bl . biyE) =2 alx:=f] C

i ¢lx:Al + afxl : C
¢Ly:Bl &+ byl : C

B ¢ g ! B

o (BVm) ! mm T e e e — '
¢ - (DEA,B,CI) (Ax:A.alx]) O\y:B.blyI) (J=[A,BI(g)) =»
=» De(j=[A,BIC(g>,Ix:Al.alx2, [y:Bl.bLyd> =» bly:=gl : C.

(4) v-compatibility. For all types/propositions A., A=z, A, B, C,
and any context ¢,

jiEAI;A23<C1) =» j1EA1,A23<C2) t Aav A

L2
T

¢lx:A) b+ a,fx3 =Y aIxl : C
. ¢Ly:Bl & byl =» bzfyl : C
¢ - h] =% hz : A v B
T e
¢ b Dofth,,[x:AY. a-,Ix3,0y:Bl.b.EyD> =>
Y Delhe,lxiAl. . azix],[y:Bl.b2fyl) ¢ C.

Frosf. Basy lewercisel. 0O

{1031 {1031




13 Heyting proof-calculi
13.8 Thearem (3—proof opsrations.
(1> 3-awioms. For all types/propositions Aful, B,
(d: [ 1 + mEAZ : ¥u. (Aful o Iv.Afu:=vi),
provided v is not in FVL(Aful),
¢ry: [ 1 + LA, BI : ¥u. (Aful = BY o . (3u.Aflul’> o B, -
provided u is not in FVu(B).

(2) FI-stratification. For all types/propositions Aful, B, and
any context ¢,

e ¢t U
: ¢ +a: Afu:=t3}
(FL): —— e e e e s
& ¢ = wfATLEYICGAY =2 L t, & 1a ¢ Ju.Aful
¢l u :: I x: Aful 1 + afu,x} : B
¢ ¢ ¢ Ju. Afful
(@) i =~ e e e e e e , [u not in FV,(B»1,

¢ + (TEA,BIY CGu.Ax:Afful.allu, x]) (¢d) =»
=Y telc,lu: BIx/Afull.afu,x3> : B,

g (3) B-3-evaluation. For and all types/propositions Aful, B, and
L any context ¢ such that u is not in FVu(B), FVu(a) and t

o e u:: U110 x : Aful 1 F ofu,x] : B
e ¢ -t U
¢ +a : Afu:=t}

¢ b+ CTIA,BI) Qtu.dx:Aful.cfu, x3) (xfAJLt]l (a>) =»
=» Tel{lt,ala, [u:WIx:Afull. . alu,x]1? =» cfu:=t3ifx:=al : B.

(4 J-compatibility. For all types/propositions Aful, B, and any
context ¢,

¢ -t :: U
¢ - a; =P az : Afu:=tl
B3 ——mm e e e s
¢ = L t, a9 P-9 =» [ t, az ]A H SU.AKU}}
¢ u 1 I x ¢ ATul 1 F a,fu,x3 =% azfu,x] : B
¢ F ¢y =» cz: Ju.Aful
(M) 1 m e e e e e e e e e , [u not in FV,(B)1,
¢ - 1melcy,lur:WIx:Afull . a.fu, x> =2»
=» Tel(c=,[u:: UWIx:Afull. . azfu, x> : B.
Froof., (o), (1): Basy [exercisel. (31): Assume ¢ I+ t :: U and

¢ - a : Afu:=t]. Then, one has, whenever v is not in FVu{(A),
2 ¢ - "IATLtICa) = Cu.Ax:Aful.Af:¥v. (Afu:=vI)~—. flulx)[tl Ca) =»

s =% Ox:Afu:=t],. Af:¥v. CAfvIHh—.fltix> &) =2
=% Af:i¥v. CAfvi>—.fltla : 3u.Aful.

£1041 {1041




g 13 ' Heyting proof-calculi

de): Assume ¢f u :: U I[L x ¢ Al + afu,xi : Band ¢ ~ ¢ : 3u.Aful,
such that u is not in FVu(B). Set balf,z] = !v.Ayrdffu:=vi.z(flviy
and 4 = (u.Ax:Aful.alu,x}?), such that
[ £ : ¥u, (Aful=BY 1{ z : B~ 1 + balf,z3 =
= tv. Ay Afur=vi.z(flviyd
Do¥v. ARV~

¢ - a : ¥u. (Aful = B>, u not in FVu(B).

One has

¢ - (A B (tu.dx:Aful.aflyu,x]) (c) =
2 (Af:¥u. (AFul=BY. Ax: (3u. Aful) . §z2: B~ . x(balf,zi)dc =»,
=2 §z:B . c(bplf:=dilz1> =ar e,

em where bald,zl = !v.Ay:Afui=v].z@Lvly>, 1. e.,

o
T
o

gz: B .cllv. Ayt Afui=vl.z(dlvlyd)) =
¥z:B~.clv. Ay Aflus=vi.z((tu. Ax: Aful. alfu,xPivly) =»

0o
¥ v i

i gz: B, cUv. Ay Afu:=vli. z(QAx: Afu:=vi. afu:=vIixIdy) =>»

fal gz:Bm.c v, Ay Afur=vl.zallu:=vIi{y] =«
#z:B~.clu. xx: Aful.zaflu, x> : B.

wi BI: Assume ¢L u :: VIl x : Al Fcfu,x] ¢« Band ¢ = t :: U,

¢ +a : Afu:=t], with u not in FVu(B), FVu(a)> and t. Then, one
has, using (27,

) ¢ + TIA,BD) OCu. A Aful.cfu, xI) (x[fARLE] C2)Y) =» .

=2 gz:B~, (Af:¥u., (Aful>—.fitla) Qu, AxiAful.zcfu, x]) =>»
=» §z:B~, (Ju.2x: Aful. zcfu,x])(tla =»

=% dz:B~. Ox:Afu:=t]. z(cfu:=t3Ix1))a =>»

=2 dz:B-.z(cfu:=tlIx:=al]d =% cfu:=tIix:=al : B.

&3>, (ui>: From the compatibility rules for the primitive proof-
operations.

13.9 Remark.

(1> The rules (vi,), ( viz), (ve) are analogues of the '"disjoint

£ sum” type-assignment rules of Martin-L&8f's [1984]1 constructive
o type theory [CSTl. The "wv-evaluation" rules (Bvy) [1 := 1,21
yvield also ""closed” variants of corresponding v-evaluation
rules in CST. Cf. the family [ D[A,B,C3}, J.[A,BI, J=[A,BI 1
above with Howard’'s [19801 "weak disjunction"” proof-ocperations.

(2> The rules (31>, (3e), (BI) are analogues of the "generalized
sum’ rules of Martin-L8f's constructive type theary, restricted
to a first-order (loglc) setting. Compare also the "claosed”
(combinator) representation [ w[AJ, ~+[A,B}] 1 with Howard's

o {12801 "weak existence” proof-operations.

[ 1051 £10B]



13 | Heyting proof-calculi
13.10 Remark (@-proof-operations in pixdl).

(1> In pxg(!), one can define disjunction alternatively, in terms
af a primitive conjunction (&), Set A 8 B := (A— & B—)—. Then,
we have, for all types/propositions A, B, C, in pAdgd!),

(1°1) Jecyv>E4,BF
(1°2> Jc=>[A,B]
2°> Dc»[A,B,C]I

ARA Az (A& BT . pr (20x,
Ay:B.xz: (A& B™) . p=(z)y,
Ax: (ASCHY . Ay: (B=CH, Ahi CABBY, §z: C~.ha',

W

where a' = a'[x,y,2] 2 < Ax':A.z(xx’)>, Ay':B.zlyy'> >.

(2> One can check easily the fact that, for all types/propositions
A, B, C, one has, in pAgdl),

(Jerx): L 1 F Je1-TA,BT : Ao (A B B,
(J(g)): [ 1 & J(z)EA,BB : B o (A B B),
Me>): L1 F DeIAB,Cl ¢+ AoCo .BoCzo (AG B S CY,

and rules (@i,)>, (@e), (BBi), analogous to (vii, (ve); (Bvai),
regp. [1 := 1,21, as well as appropriate ®-compatibility rules.

}
i

(3> Moreover, in view of the "surjectivity" rule (&), one has
A alsa, in pAd(!), a kind of extensiconal behavior for the

- B-proof-operations: for all types/propositions A, B, and
any cantext ¢,

R———

¢ F (Dc>[A,B, (ABBYI) (J¢1-TA,BI) Je2-IA, B () = ¢,

It is easy to see that (n®=) is derivable in pAF(!)> only because
applications of the form ¢[x:Cl + fx make sense, in general,
for some type C and p-terms f such that ¢ - £ : A@® B, i. e.,
ultimately, because ® is defined in terms of connectives whose
B associated proof-operations are extensional (here: o, &). With
'f a primitive @ and primitive @®-proof cperations like D¢, and
ok o Jeasx [1 1= 1,21, (a®=) does not follow from (gB;), [1 := 1,21
and rules of A¢(!) only. The =»-analogue of ®=) is also not
available in prg(t).,

o]
!
i
)

o

(4) Ve can define, in pAg(!), the analogous procf-notation for
the @®-operations, from the family of proof-combinators
L D¢>fA,B,CR, Jc¢+>IA,Bl, Jc¢=>[A, BT 1, as, e. g., by,

Dcca(c, [x:Al.allx3, [y:Bl.biyl) 1= gz:C.c<a'fz],b' [z,
where a’' = Ax':A.zafx'], b’ = Ay':B.zbliy'1,

Jes>EA,BICeY = Az: (A—&B™).psfzdc [1 := 1,21,

! § Then it is easy to see that, muwtatis mutandis, rules similar
s to those of Theorem 13.7 (2)-(4) above are available for the
latter notation, as well.

{106] [ 1061




- } & |
[IRe— | RO

LSRR

13 v Heyting proof-calculi
13.11 Remark (The Heyting falsumrule).
Recall that, for all types/propositions A, we had, in Ag(t?,
wry: [Ex falso guodlibstl: U1 F wlAl Zae Xz L. dy:A—.x ¢ L o A
Ultimately, the Heyting falsum-rule becomes, in Af(),
(Wald: ¢ Fa: § ==>¢ b+ afAJ@) =» ualad) : A.
Meyting prosf-calewli. With this, we have already the ingredients
necessary for the simulation of (a variant of) the Heyting proof-

calculus for HQ, the first-order "intuitionistic" lagic.

A natural variant of the Heyting first-order proof-calculus, XH!
say, can be described as follows (cf., efg., {Martin-L&8f 19841):

13.12 Definitiaon (4 Heytimg proof-calculus MH!),

(1> "Intuitionistic” pgroof-gsyntas:
(11> AH!-types: the type-syntarx of AH! is isomorphic to a

provability language Llua = LL3,A,v,¥,31 (or L02,&,8,Y%,31,
with & for ~ and @ for v, [NB: T, l are primitive types
in lra.l.

(12) AH!—-terms: the term-syntax of AH! are of the form:
(1°) 2ax:A.allx}, fa,
(2°) <a, b’a.e, pilA, Bl [1 := 1,21,
(3°> 3afA,BI) [i := 1,21, Defc,lx:Al.alx], [y:Bl.bIyD,
4°> tu.afful, £fl+tl,
By L t, a la, felc,lu:: VBIx:Afull. . afu, x>,
(6°) waad,
where £, a, b, ¢ are AH!-terms, t is a Uterm and A, B, C
are types/propositions in Lua.

(2) Stratification context rules: <>, <I>, <KK>, <K¥> las for Af'l.

(3) Stratificationm type-assignment rules:
(31) Zrules: (3iX), (oe),
(32 A-rules: (A1), (reg) [1 := 1,21,
(33) v—rules: (viy) [1 := 1,21, {(ve),
(34)Y ¥-rules: i>, (Ye),
(3% F-rules: (31), (3e?,
(36 l-rule: (wall.

(4) Evaluation rules:
(41> orules: (Ba3k), (r3X),
42) r—rules: (Bry) [i 1,21,
43> wv-rules: (Bwvy) [i 1,21,
(44) ¥Y-rules: (BY), ),
(45) 3F-rule: BI,
(46> No l-rule.

i

(5) Compatibility rules: [as expectedl.

[ 1071 £1071




13 Heyting proof-calculi

In fact, the explicit type-parametrization in proof-terms of the
form <a, bPa.e, [t,ala, pciald,Bl(c>, 3:0[A,BI(c> [1i := 1,21, is not
necessary; we have used this syntax in order to make transparent
the fact that the necessary rules are already available in Ag!.

13.13 Remark.

(1> There are several variants of the Heyting calculus, differing
in their "extensionality type’:

+ the variant AH! above can be interpreted, in the obvious
way, in Ag!, (AH! is not "&-extensional);

¢+ the "&—extensional" ["surjective"l variant piH! := AH! + (")
can be interpreted, mutatis mutandis, in pAd! [ (an) or (&),
with & primitive, is "surjectivity of pairing”; this extends
the group 42) of rules abovel ;

+ however, in the current proof-theoretic literature only
an "intensional” variant, ABH! say, without 32, ),
is explicitly considered.

i (2) Putting aside [Martin-L8f 19841, the proof-theoretic literature
around Heyting's first-order logic HQ seems to credit AgH! as
a kind of kernel standard formalization for the Heyting first-
order proofs. Beyond ABH!, one usually considers also au Ao
"commutative” [or "permutative’”] ®- and J-reduction rules, as
well as a set of patching "}l-rules", whose réle is to insure
conflusnce properties (cf., e. g., [Troelstra 19731 4.1.3).

g The "extensional" ("n-type") assumptions are usually ignored.

From the above, it is clear that (p>AH! is a fragment of (p)Ag!,
in the definitional sense. This can be made precise, by defining
¥ an appropriate translation of the (p)AH!-proof-syntax into the

e (pXA§!-proof-syntax.

13. 14 Fact.

Let H<p>m, and Fcepre resp. stand for derivability in (p)AH!,
and (PA§!, resp. and let (...>° be a mapping of the primitive
type- and p-term syntax of (p>AH! into (p)Ag!, such that ¢ ..)>°

+ preserves identically the [ (n)-v—-3-ll-free fragments into
the §—free part of (pXA¥!, and

+ gends [ (A)-v—3F-Ll-primitives into corresponding notions, as
defined in (pPYAH,

Lthat is, ¢(...>° maps t-statements into t-statementsl. Then,
for all p-terms a, b in Terml (p>AH!1,

o» ¢ g_(p)H a : A == ¢° !"(p)c: a° AO,
(2) ¢ Fepomw a =2 b A ==> ¢° bepsa &% =2 b ¢ A°,
(3 ¢ *—Cp)H a = b : A ==> ¢° !"(p)c; ae = be : A°,

{1081 £1081]




-
§
i
b

St e F

1
i

t
S

13 Heyting proof-calculi

Froof. By a direct inspection of the rules of (p)AH! and results
established earlier. In the above, (p>AH! has been so described
such as to make (,..2° : (p)AH! —> (PXAY! into a mere syntactic
transcription of data. O

From this {viz., 13.14 (3>]1 and Consl (p>Xy!l [6.23 and 13.4 (31,
one has immediately a consistency result.

13.15 Thearem.
Const (p>2H!1,
13.16 Remark.

(1> However, several "permutative” rules, as well as some l-rules
(cf. [Troelstra 19731, 4.3) are not (prAdt-derivable, in the
definitional sense above {(some "permutative” rules cannot even
be obtained if =» is replaced by equality =). So, in fact,
TICRL (pY2H!1.

(27 In view of SEL (p>Ag!l [11.28 and 13.4 (3>1, 13.14 (2> above
insures alsc the required normalization properties for (p)>AH!.
If an independent technigus can be found, guaranteeing the
wri el by of noeaal forms [UND in (p)AH!, this should make
superfluous the considerations on "commutative” reductions,
etc. This approach is actually taken in [Martin-L5f 19841,

13.17 Remark (Extensionality for 66— amd 3-proof-operations).

(1> One can also add to pAH! extra "extensionality” assumptions
for & and 3-proof-aperations:

Gln): ——— e
¢ F Az (ABBY . Deer(z, [xt Al . £(Jc12¢x)),LyiBl . £(Jc2> (22> =¥
Ix, y not free in f1,
where jc¢i>{(c) is shorthand for Jci»[A,BI¢c) [1 := 1,21.
¢ - £ Su.Aful = B
1S e v
¢ - Az du. Aful.Telz, s ALy ATul)  flu,x1a) => £,
fu and x not free in f].
(2> VWith ILA®B3R := Az: (A@GB).z, one has [ 1 - IFTAGBI : AGEB — AG®B.
Then, by B, we get, in piH!,
[ 1 F Az (ABB) . D (Z,Ix:1AY, J¢1>TIA,BI(xX),Ly:Bl. jc=s0A, By
= ITA®GB],

whence, if x and y are not free in c,

{1091 [ 1091



13 Heyting proof-calculi

¢ D((:;)(C, [X:A].j<1){{A,BB(X), [y:Bl.j(zyﬁ:A,B]}(y)) = C.

(3> Analogously, with If3u.Al := Az: (3u.Alul).z and B = JFu.Afu]
one has, in piH!, [ 1 + If3u.Al : 3Ju.Aful = 3u.Aful. Then, by
M3, I 1 F 2z 3u. Aful. . ve(z, lu:: WIx: Afull . Lu,x3a) = II3u. AL,
whence, 1if u and x are not free in c,

¢ F te(c, [ur:lix:Afull.fu,xla) = .

o

Qj (4) This suggests that one could have had, alternatively, slightly
weaker @- and J-extensionality assumptions:

i ¢Fc: AGB

¢ b Deearfc, [x:Al. Jecr>[A,BI(x), {y:Bl,. Jc=>IA,BI(y)) =2 ¢
Ix and y not free in c1l,

o a3y e -~ [u, X not free in cl,

(5> In the end, one can define fuwlly extensional Heyting proof-
calculi {Rezus 1986al,
PAnH! = pAH! + (@ + (13 and
plﬂ*H! = le! + (B + (0w,

It is immediate that pAnH! contains pAH! and is a subsystem
o aof pAaxH!. However, the classical proof-calculus pA§! does
[ et contalin pAicx>HY, in the definitional sense above.

[

[1101 [1101




an.

oy
|
!
i

H. P.
74

84

Réferences

Barendregt

Fairing without conventional restraintz, Zeltschrift fiir math.
Logik und Grundlagen der Mathematik 20, 1974, pp. 289-306,
The Lambda Calculus: Its Syntax and Semantics, North Holland,
Amsterdam, etc. 19817, 12842 (revised).

H. Barendregt and A, Rezus

83

80

87

M, V.
oX

Semantics for Classical Automath and related systems,
Information and Control 59, 1983, pp. 127-147. [Rev. MR
86g: 03100 and Zbl 564.68060.1

de Bruijn

A survey of the Automath project, in: J. P, Seldin and J. R.
Hindley (eds.?> To H. B. Curry, Essays on Combinatory Logic,
Lambda Calculus and Formalism, Academic Press, London, etc.,
1980, pp. 579-606,.

Generalizing Automath by means of a lambda-typed lamboda—
calcuwlus, in: D, W. Kueker @t al. (eds.) Mathematical Logic
and Theoretical Computer Science, Marcel Dekker, New York, 1987,
pp. 71-92 [Lecture Nates in Pure and Applied Mathematics 1061,
Bunder and R. K. Meyer

Condensed detachment and combinators, The Australian National
University, The Automated Reasoning Project, Canberra ACT,
Report TR-ARP-8-1988, September 20, 1988, 78 pp. [to appearl

A. Church

56

H. B.
63

H. B.
58
72

D. T.
80

F. B.
52

Introduction ta Mathematical Logic (1), Princeton UP, Princeton
NJ, 1956,
Curry
Foundations of Mathematical Logic, McGraw Hill, New York 1963.
(Reprints: Dover Publications Inc.,, New York 1977%, 1684%.)
Curry et alii ’
Combinatory Logic (1), North Holland, Amsterdam, etc., 1958.
Combinatory Logic (2), North Holland, Amsterdam, etc., 1972.
van Daalen
The Language Theary of Autaomath, [Ph. D. Diss., University of
Eindhoven 19801, Wibro, Helmond 1980, 307 pp.
Fitch
Symbolic Logic: An Introduction, Ronald Press, New Yark 1952.

G. Gentzen

33

35

Ubar dag Verhidlinis zwischen intuitionistischer wund klassischer

~Lengiky Arch. math. Logik 16, 1974, pp. 119-132. (Cf. also:

M. E. Szabo (ed.) Gerhard Gentzen: Caollected Papers, North
Holland, Amsterdam, etc., 1969, pp. 53-67. Paper of 1933.)
Untersuchungean Uber das logische Schliessen, Mathematische
Zeitschrift 39, 1935, pp. 176210 and 405-431. (Cf. also:
M. E. Szabo (ed.? Gerhard Gentzen: Collected Papers, North
Holland, Amsterdam, etc., 1969, pp. 68-131.>

Girard et glii [= P. Taylor and Y. Lafontl
Proofs and Types, Cambridge UP, Cambridge UK 1989 [ Cambridge
Tracts in Theoretical Computer Science 71. (Revised lecture
notes for a course given in 1986-87, at the Univ. of Paris 7.?
Glivenka

Sur la logigue oe M. Brouwser, Bull., Cl. Sci., Académie Royale
de Belgique [51 14, 1928, pp. 225-228.

L1111 [1111




2
References

K. G8del
33 Jur intuitionistischer Arithmetik wund Zahlentheorie, in:
Ergebnisse eines mathematischen Kolloquiums 4, 1933, pp. 34-38.
(Cf. alsa: S. Feferman gt al. (eds.) Kurt G8del: Collected
Works 1, Oxford UP, Oxford UK, etc. 1986, pp. 286-205).
G. H. Helman
83 An interpretation of classical proofs, Journal of Philosophical
Logic 12, 1983, pp. 39-71.
87 Un the eqguivalence of proofs involving identity, Fotre Dame
Journal of Formal Logic 28, 1987, pp. 297-321.
A. Heyting
30 DRie formalen Regeln der intwitionistischen Logik, Sitzungs—
berichte der Preussischen Akademie von Wissenschaften, Fhys. -~
math., Klasse, 1930, pp. 42-56,
J. R. Hindley
8¢ BCK-combinators and linsar l-terms have types, Thearetical
Computer Science 64, 1989, pp. 97-105.
J. R. Hindley and D. Meredith
80 Frincipal type schemes and condensed detachment, Journal of
Symbalic Logic 55, 1990, pp. 90-105.
. Hindley and J. P. Seldin
86 Imtroduction to Combinators and A-Calculus, Cambridge UP,
Cambridge UK 1986 [London Mathematical Saociety Student Texts 11.
¥. A, Howard
80  The Formulag-as-Types notion of construction, in: J. P. Seldin
and J. R, Hindley (eds.) To H. B. Curry, Essays on Combinatory
M Logic, Lambda Calculus and Formalism, Academic Press, London,
etc., 1980, pp. 479-490 (written in 1969).
I. Johansson
ey 36 Der Minimalkalkal, ein reduzierter fntuitionistischer
§ Formalismss, Compasitio Mathematica 4, 1936, pp. 119-136
- (appeared in 1935).
L. S. [van Bentheml Jutting
72 Checking Landau’s "Grundlagen” in the Automath System, [Ph. D.
Diss., University of Eindhoven 19871, Mathematisch Centrum
[CV¥WIl, Amsterdam 1879, 120 pp. [ MC Tracts 831:[CWI1l.
£ J. Kalman
L 83 Condensed detachment as a rwle of inference, Studia Laogica 42,
o 1983, pp. 443-451,
J. ¥. Klop
80 Combinatory Reduction Systems, [(Ph. D. Diss., University of
wid Utrecht 19801, Mathematisch Centrum [CWI]l, Amsterdam 1980,
iv + 317 pp. [HMC Tracts 1271:[CWVI1l
i A, N. Kolmogorav
25 O principe tertium non datur [0m the principle of the ewcoluded
mididiel {Russianl, Mat. Sbornik 32, 1925, pp. 646-667 (Cf. also:
J. van Heijenoort, d(ed.’, From Frege to Gddel, A Source Baok in
Mathematical Logic 1879-1231, Harvard UP, Cambridge Mass., 1967,
1970%, pp. 414-437.)
S. Kuroda
§ 51 Inmtwitionistische Untersuchurngen der formalistischen Logilk,
; Ragoya Math. Journal 2, 1951, pp. 35-47.

,"""’T?
3
s

[
o

{1123 {1121




Referencés

M. H. L&D
76 Embedding first—order predicate logic in fragments of
Intuitionistic logic, Journal of Symbolic Logic 41, 1978,
pp. 705-718.
P. Lorenzen
55 Einfithrung in die aperative Logik und Metamathematik, Springer
Verlag, Berlin, etc. 1955, 1969=,
P. Lorenzen and K. Lorenz (eds.?
78 Dialogische Lagik, Wiss. Buchgesellschaft, Darmstadt, 1978.
J. tukasiewicz
48 The shoritest axiom of the implicational calcuwlus of propositions,
Proceedings of the Rayal Irish Academy 524, 3, 1948, pp. 25-33,
. (Cf. also: L. Borkowski (ed.? Jan Lukasiewlicz: Selected Vorks,
i North Holland, Amsterdam, etc., 1870, pp. 295-305.>
; P. Martin-L&f
84 Intuitionistic Type Theory, Bibliopolis, Naples 1984 [ Studies
: in Proof Theoryl. (Lectures given in Padova, in June 1280.)
o C. A. Meredith and A. N. Prior
63 Notes on the axiomatics of the propositional calcuwlus, Fotre
' Dame Journal of Formal Lagic 4, 1963, pp. 171-187.
= D, Meredith ‘
o /é 77 In Memoriam! Carew Arthur Meredith (IQOd*IQZﬁ), Notre Dame
B Journal of Formal Logic 18, 1977, pp. 513-516.
R, Montague and L. Henkin
" 56 On the odefinition of 'formal deduction’, Journal of Symbalic
Logic 21, 1956, pp.129-136.
D. Prawitz
65 Ratural Deduction, Almgvist & Wiksell, Stockholm, etc., 1965.
. 7Y Ideas ard reswlts In proof theory, in: J. E. Fenstad (ed.)
Praceedings of the Second Scandinavian Logic Symposium, North
Holland, Amsterdam, etc., 1971, pp. 235-307.
A. Rezus
81 Lambda-conversian and Logic, {Ph. D. Diss., University of
Utrecht 19811, Elinkwijk, Utrecht 1981, ix + 196 pp. L(Rev.
! Libertas Mathematica 2, 1982, pp. 182-185, cf. Zbl 493.03003.]
82 Un a theorem of Tarski, Libertas Mathemntica [Arlington TX]
- 2, 1982, pp. 62-95. [Rev. MR 83c:03019 and Zbl 481.03010.1
o 83 Abstract Autaomath, Mathematisch Centrum, Amsterdam 1983,
wd vi + 188 pp. [ISEN 20-6196-256-01L{MC Tracts 160]1:[CV¥I1.
[Rev. MR 84j:03030 and Zbl 507.03001.1
. 83a Constructive type theory and functional programming, Lectures
N for the Algemeen Informatica Calloquium, University of Nijmegen,
Department of Computer Science, December 1983 (cf. [19861).
86 Semantics of constructive type theory, Libertas Mathematica
ok [Arlington TX! 6, 1986, pp. 1-82. [Rev. MR 88a:03034 and Zbl
- 632. 03047.1 :
86a Impredicative Type Theories [Syntax, Model Theory and Formal
Pragmaticsl, University of Nijmegen, Department of Computer
Science, Report KUR-WVE-CS TR-85-1986, June 1986, 288 pp.
86b Automath: syntax arnd semantics, Talk delivered at the Institute
" of Advanced Studies, The Australian National University, The
Automated Reasoning Project, Canberra ACT, September 1986.

{1131 £1131

]
{
!
i




¥
References

87 Fropositions-as—types revisited U1 Higher-order constructive
type theoryl, University of Nijmegen, Department of Computer
Science, Report KUN-VE-CS TR-97-1987, February 1987, 91 pp.

87a Varigties of generalired functionality, University of Nijmegen,
Department of Computer Science, Report KUR-¥E—-CS TR-102-1987,
February 1987, 106 pp. (with P. J. de Bruim.

87 Constructions and propositional types, University of Nijmegen,
Department of Computer Science, Internal Report KUN-VE-CS
87-1-1987, April 1987, 64 pp.

87¢c Generalized typed lambda-calculi! recent advances, Paper
contributed to the XII-é&me Congrés de L’Académie Roumano-—
AmBricaine [ARAY (III-2dme Section! Mathématiogues, Physigue),
Sorbonne, France, June 22-27, 1987.

88 A type—theorstic approach to classical and non-classical
logics, Talk for the "Jumelage" Workshop Typed Lambda—Calculi,
University of Nijmegen, November 14-18, 1888.

89 VWhat i a classical proof?, Talk for a GMD-Colloquium, held
at the Forschungsstelle fir Programmstrobturen [Computing
Departmentl, University of Karlsruhe, May 1686.

8%a The twpe theory of classical logic, Talk for the Informatica-
Colloquium, University of Groningen, June 1989.

M. Schénfinkel :

24 Uber die Baustelns der mathenatischen Logik, ¥athematische
Annalen 92, 1924, pp. 305-316. (Cf. also: J. van Heijenocort
(ed.? Fram Frege to Gddel, A Source Book in Mathematical
Logic 1879-1931, Harvard UP, Cambridge Mass., 167, 1e70F,

I pp. 355-366.)>
5 J. P. Seldin _

79 Frogress report on generalized functionality, Annals of
Mathematical Logic 17, 1979, pp. 29-59.

87 Mathesis: The Mathematical Foundation of Ulysses, Rome Air
Development Center, AFSC, Griffiss AF Base, New York, RADC:
TR-87-223 Interim Report, November 1987, 160 pp.

S. Stenlund

72 Combinators, A—terms and Proof Theory, D. Reidel, Dordrecht,

lre7z.
V. W. Tait

67 Intensicnal Interpretations of funciionals of finite type I,

Journal of Symbalic Logic 32, 1967, pp. 198-212. (No more.)
M. Takahashi
89 Parallel reductions in X-caleculws, Journal of Symbolic
Computation 7, 1989, pp. 113-123G.

A, S. Troelstra (ed.?

[ 73 Metamathematical Investigation of Intuitionistic Arithmetic

Qf and Analysis, Springer Verlag, Berlin, etc. 1973 [Lecture Notes
in Mathematics 3441 (Corprections amd additions: Report 74-16,
Univ., of Amsterdam, Department of Mathematics, November 1974).

A, 8. Troelstra

86 Stpromy normalization for typed terms with surjective palring,

Fatre Dame Jourmal of Formal Logic 27, 1986, pp. 547-550.
g A. 8, Troelstra and D. van Dalen
o 88 Constructivism in Mathematics, An Introduction (1-2), Horth-
Holland, Amsterdam, etc. 1988,

e

{1141 [1141




