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Adrian Rezus Two 'modal’ logics

TWO 'MODAL’ LOGICE*

"Marco Polo describes a bridge, stone by stone.

But which is the stone that supports the
bridge? Kublai Khan asks.

The bridge is not supported by one stone or
another, Marco answers, but by the line of the
arch they form.

Kublai Khan remains silent, reflecting. Then

- he adds: ¥hy do you speak of the staones? It is
only the arch that matters to me.

Polo answers: ¥ithout stones there is no arch.”
[Italo Calvino: Le cittd invisibili (1972),

English translation by William Veaver.!

This paper concerns two logics of a unusual kind. As propositional
laogics, they are called L!4 and L!S here. Conveniently, an appended
Q will distinguish first-order variants. L!'4 and L!S may be called
"modal” because they look so, at least syntactically (like Lewis’

S4 and 85). However, unlike for S4 and 85, the L!-boxes and diamonds
do not make up a rafson J'&tre. Such logics are “linear” in a
sense that can be made precise by type-theoretic methods and play
an important réle in the Jocal analysis of the proof-theory of
Heyting's logic H(Q), on the one side, and of classical logic C(Q),
on the ather. As expected, loral is to be contrasted with global.
These qualifiers apply to proof-theoretic points of view., In
particular, "local” points out to the fact that the "global®
synoategorenata of classical (etc.) logic if [...then...l, and,

or, every/all and so forth, might mot be wilitimate (operational)
atoms of meanimg as disclosed by the usual Gentzen M-rules. This
doubt is justified mainly by the fact that no satisfactory semantics
of claggical Clogie) proofs has been provided so far and perhaps
also by the fact that we have only partial insights into HQ-proof
behaviors (the "Heyting semantics").

In these notes I will provide only inmtroductory comments on the
provability syntax of L14(Q) and LIS5(Q). This is a proper part

— the easy one - of a larger enterprise that might be characterized,
provisionally, as a pure woperational interpretation of both
"intuitionistic” [Johansson-Heytingl and classical proof-theory.

The details are deferred and will appear elsewhere.
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Adrian Rezus Two 'modal’ logics
81 Syntax. As first-order logics, L!4Q, L!{5Q share the same sgyntans:

- atoms:

— "indeterminates”: Fiu,,...,unl, possibly with parameters u.
ranging over somg universesdomain of "individuals" U4 (all
this may remain anonymous, in the end),

- "propositional” constants: T (summm veruamd, L (summum falsum,

- Iogical cornstants:

- linear gntailment + (linearly entails),
— fi-lirsar conjunction & (with),
= wniversal espornentiation 0 (of course)’,

- & lingar 2il-cquantifier ¥ ( forl all>

= formaslag: defined inductively from atoms, by closing under the
primitive propositional connectives and ¥; the spelling is:
(A » B), (A & B), (AF?), ¥u.A; parentheses and separating dots
are used for emphasis, with usual Church-Turing conventions.

The remaining connectives and 3 are introduced by oefimitiom

LDf~1 A— 1= A -+ i Clinsar negation, "ortho-inversion),
{Dft] t 1= i Clinsar verwum),

[DEff] f = I Clinsar falsum

[Df0l A 0B := A- -+ B Clinsar figsion, par),

[Df®] ARB = (A - B~ (lingar fusiomn,

{DE@E] A®B = (A & B>~ (hi~lingar disiunctiomn,

LD A== = ATE3I Cexigtontial exponentiation, why not).
EDf31 Ju.A 1= (Yu, A Clirnsar existencs).

In notation, the ortho-inversion has strongest binding power; e. g.,
in EDE{l, parentheses are to be restored as in ((A7)>E3)—,

[ Proto-) tinear equivalence wmay be thought of as an abbreviation
or as a connective, I also introduce oritfw-symmetry {(double
ortho-linear negation? in the same way:

[ Df+-] A+« B
[Df=] A=

(A » B & B » &),
A, lactually (A—>—1.

nu

The two exponentials O and ¢ are swupgr-scriplted and are also said
to be motalifies. Up to & certain point, they will behave like [
and ¢ resp. in Lewisg’' logics 84 and 85. One defines alsc connectives,

[Df=1 A #F B := A3 =+ B,
[DfA} A A~B := A4 & B,

[ D] A v B = A3 @ Br3,
{Df™ A := A 3 £,

corresponding to the usual intuitionistic (in L!4) resp. classical
(in LiIS) analogues, together with a notational expedient called
Fhromng negetlom

{2l [21



Adrian Rezus Two 'modal' logics
[DE™] A~ = A =% ),

{One could have defined many more - even modal, without quotes -
as suggested recently by Nuel Belnap, in correspondence.!l

The propositional part. The propositional systems L!4 and L!5 are
presented awxiomatically first; relevant fragments are isolated
and labelled as shown, e. g, the fragment called BCI is given by
{{b), &2, (1), (>}, oL (ortho-linear logic) is axiomatized by
{(b), (), (1), el , (1), (4D, (M}, PpL (oroto-linear logic) adds the
&-axioms with (&) to oL, etc. This taxonomy is convenient (and
has even a good motivation).

Further, ==> stands for the meta—theoretic conditional.

(b [Prefixingl A-»B-» ,(C = A » (C -+ B

(e [Commutationl A+ (B~»C ~» B~-» (A0

i) [ Identityl A=+ A

-+ UMt ponensl A, A+ B ==>8
————————————————————————————————————————————————————————————— BCI
418 L Summian veruml T

(kx) L(T-Simplificationl T+ .A~» 7

(4 DD lex negatio affirmatl A= - A
—————————————————————————————————————————————————————————————— oL
{p:? [Left projectionl A &B-» A

(p=? L[Right projectionl A& BB

{8a’ [Conmpositionl A+ B) & (A~»C)» A-+DB&C
(&2 [ Adjunctionl A, B==> A & B
—————————————————————————————————————————————————————————————— pL
(Kca? [Normalityl (A - BYF2? » ,AF3 - BEI

(lea? DAL opportere sssel AT -+ A

(4dra? [Lewisal AE3 » AF3rC3

S8 [ Exponentiatianl A ==> Ac3

(Bea? [O-Simplificationl A-» B =3 A

(8ca) [O-Self-distribution] A=z (B-+C~» (A 3B > (A=C
————————————————————————————————————————————————————————————— Lig
Bra) [Lewisgl ATT 4 AFS
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Lis

The First-order part. Finally, Li4Q and L15Q arise from the
corresponding propositional segments by adding the following set
of "linear” assumptions on the ¥-quantifier:

(i¥)> [Ground generalizationl Aful ==> ¥u.Aful, if A is an axiomn,
(k¥) [Atomic generalizationl A - ¥u.A,

(s_a¥)[+CGeneralizationl ¥u. (A -+ B) » ,¥u.A - ¥u.B,

(82¥) [&Generalizationl ¥Yu.A & ¥u.B + ¥u. A & BY,

¢%¥> [Atomic ¥-Commutationl ¥u, ¥v. A » ¥v.¥u. A,

@%¥) [¥%-Commutation] A - ¥Yu.B + ¥u. A » B,

& D] [ Instantiationl Yu. Aful ==> Afu:=t13.

£31 £31
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In 4>, t is any term with u not free for t in A and, further, in
(&¥>, (@BY), u must not be free in A. As expected, ...[u:=t] stands
for a substitution operator.

Motes, Incidentally, one would also like to mention extensions Ri4d
and R!S of L!4 and L!5S resp., by a "un—exponentiated" (s}, wviz.

(s) [Self~-distributionl A+ (B -»C)» (A~ B)» (A O,

So, among other things, (sc¢3) becomes redundant in R4 and R!S.
The relevant fragments of R!4 will be labelled correspondingly:
oR := okl + () and pR := pL + (). I won't insist too much on
R!5, however: it turns out to be a clumsy way of re-formulating
Lewis’ 89. As ever, appending Q to the name of a propositional
logic yields a name for the corresponding first—order extension.

The axiomatics appearing here contain several redundancies: the
main objective has been to get a sgparated formulation for the
basic system Li4Q, in the '"layered” sense, rather than to make
some economy. [ The LiISQ)-formulation is mot separated.]

Among other things, at the first-order level, the axiom schemes
(¢%) and (8Y¥) can be dispensed with, although, for proof-theoretic
purposes, it it not so wise to do it [since it is hard to get then
backl, ‘

Several remarks are in order. 1 will supply historical details
whenever applicable.

§2 L{4Q is Girard’'s "linear” logic. The first thing worth saying
at the very beginning is perhaps the fact that L!4Q is (equivalent
to) Girard's [871 "linear” logic?t.

A proof of equivalence would be useless here: it presupposes some
familiarity with Girard [87]1 and tedious explanations I would rather
like to avoid=,

Subsystems of L14Q. Although fwll Li14Q is a "logic of Girard”,
it has a rich heredity. I will tell the story, once more, here,
because most aspects of it, known before Girard, are of a mere
archivistic nature, if not even pure folklore.

BCI. The pure implicational part of L!'4Q is the same as that of
L!4 and is axiomatized by BCI. The connective 0 axiocmatized is
the pure linsar implication or the Smiley-Meredith-Jadkowsti
Iimplicatiom this deserves some proocf. BCI is, actually, the most
important part of L!14Q, since it determines the behavior of the
underlying notion of entailment via an appropriate Deduction
Theorem.

This "logic” is implicit in a note of Alonzo Church [(51al and

araose first in speculations about the concept of a would-be
"minimal” implication. It appears explicitly in Smiley {581 as La=.

£41 L 4]
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Timothy Smiley has investigated the required form of Deduction
Theorem for BCI, along Church's suggestions, and established (at
least implicitly> that the natural deduction variant of the system
requires that each hypothesis must be wsed in derivations and, if
sa, 1t must be used aexactly once.

The name comes from Carew A, Meredith, who isolated it independently
(in 1956 or earlier) and provided different axiomatizations for it,
even in the single-axiowm cum—(MP)-style (see Prior [621, Meredith &
Prior [631, Rezus [821). The motivation for the name is in the
proposi tion-ag~types interpretation of the axiomatics, rediscovered
{in the fifties, - again independently, - after Curry, but beforse
many others) by Meredith.

In this view, the axioms are supposed to own "primitive proofs”
b, ¢ and i, to be understood as combinators in an interpreted
typed combinatory language, where application is the Meredith
comdensed detachment operator. [As an aside, Meredith’s theory
can be extended such as to cover first-order classical logic, as
well.l From incidental comments of Meredith — recorded by Arthur
N. Prior in print and otherwise - it is obvious that he has also
formulated a natural deduction variant of BCI, by imposing the
expected restrictions (here: linearity”) on the formation of
A-terms in the corresponding typed A-calculus.

Somewhat later (1960), Stanislas Jadkowski has provided a decision
procedure for the same system (Jadkowski [631). Jadkowskl says that
he has been stimulated to study BCI (in fact, BCK, see below) by
Helmuth Thiele.

Mooels for BCI have been found by Alasdair Urquhart, around

1972, (Urquhart [72al, this is an abstract, and only a gingle line
of it concerns the present comment; full details are, however,

given in the dissertation Urquhart [{73] and can be also extracted
from Urquhart [72,72bl, putting abelian monoids in place of semi-
lattices; cf. also Urquhart's contributions to Anderson & Belnap
[8%] [= Entailment IIl, promised as 8§47 already in Anderson & Belnap
[75], as well as related information appearing in Urqubhart [861 and
Dunn [861).

The mornoidal semantics for BCI, developed by Urgubhart extends to
the full LY4Q (sig), with some assistance from Girard (871: this
semantics has been rediscovered (in August 1986) by Girard and
appears as "semantics of phases” in that monograph<.

Except the "linearity'-condition on the use of hypotheses in
(natural deduction-style-) derivations, mentioned earlier, BCI is
remarkable syntactically by the fact that its "principal” theorems
[i. e., formulas that are not proper subgitution instances of BCI-
theorems] are classical tautologies where each propositional atom
("variable") occurs exactly twice (this has been first observed by
Smiley, and later by Jasdkowski).

[ 5] {51
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Less obvious is the fact that Meredith application - usually a
partial operator on formulas (see Rezus [821) -~ ig totally defined
o BCI-theorems., This 1s, in fact, a feature shared with BCK, a
purely implicative *logic” which extends BCI by

[kl [Simplificationl A+ B+ A

(also investigated by Meredith and Jaskowski), conjectured by
Carew Meredith, again, in the sixties; an affirmative answer for
BCK with a cworrect proof has been provided only recently by
Raoger Hindley (February 1987; the BCI-analogue follows, although
it could have been also recovered from an earlier remark of
Mariangiola Dezani and Mario Coppo).

Ortthuo— arnd proto-linear logic. BCI pluws an involutive (say
“"classical”) negation, defined inferentially, in terms of }

- actually oL, if we agree to forget about the somewhat boring
axioms (), (kx> and the constant T -, has been investigated by
Timothy Smiley [58/91, who defended it philosophically, as a
logic of entallment, free of so-called "paradoxes of relevance”.

The fragment called here oL and referred to as wrtho~limgar logic
is an exact axiomatization of Girard’'s "multiplicatives” while pL,
referred to as proto-linear logic, axiomatizes also the behavior
of his "additives"=,

One could also notice the fact that (ki) and (1) might have been
replaced - without any damage as regards the intended separation
properties - by

=M 0 Ad guodlibet veruml A - T,

Contractiosn. Although BCI, ol as well as plL deserve the name
“"relevant logics”, according to criteria advocated in Anderson
& Belnap [751, Routley =t al. [821, etc., they are actually very
weak, due to the absence of Contraction, viz. the Hilbert axiom

(w) [Contractionl A=+ (A-»B ~» ., A~ B
or, equivalently, of full Self-distribution on the major
(s) [Self-distributionl A+ (B»C —» (A= B > (A (C),

This explains somewhat why even Richard Sylvan (better known as

R. Routley’, who took some care to isolate systematically most
weak relevant logics which might have ever been of some interest,
has paid little attention to them in Routley i al. [84]1 and other
places.

Logics wi thowt Contraction have been first investigated by F. B.
Fitch (1934 and later) and V. Ackermann (1937 and later) in
connection with the occurrence of paradoxes in logics based on
caombinators and A-calculi ("illative” logics>.

[ 61 {61
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The immediate heuristics motivating such a logic can be extracted
from even very superficial an inspection of Curry’s paradox. But
the omission of Contraction leads to foundationally uninteresting
systems,

Notably, ifukasiewicz’ many-valued systems lack Contraction, too,

but retain “non-relevant” principles, as, e. g., (k). Apparently,
fukasiewicz was brought to consider such systems by reflections on
the nature of modalities in Aristotle. See, e. g., fukasiewicz [301}.

By prohibiting bots Contraction amf Weakening — (w) and (k)

say — one obtains a reasonable starting point for a couple of
deviamt logics as, e, g., advocated by comexivigts, on the one
hand (McCall [661), or by various para-consistentists, on the other
{see Priest & Routley [%X83,841, or Priest ot al. [8%1),

The logics L14Q and L!SQ are, prima facisg, in the same deviant
camp. On second thoughts, they will turn out to be rather imbued of
grthocoxy and will pretend to advise on how to oo intuitionistic
and classical logic, resp. Their apparent deviance is, in fact,
pretty old strategy: recwler pour mieus satdter.

83 "Relevant” mneighbors. Adding either (w) or (s) to BCI gives the
Moh—-Church pure relevant system R.., (Moh [501, Church [511; this
axiomatizes exactly the pure implicational part of the Anderson-—
Belnap relevant lingic R (Anderson & Belnap [751).

On the same line of thought, oL plus (W) is (theoremwise? equivalent
to a formulation of the implication-cwnmrnegation fragment of R,

with added constants, & la Robert Meyer; see details, especially
about R*—, in Anderson & Belnap [75] and the literature cited
there.

By analogy with ok, oL plus (w) will be called oR here {(ortho-R,
artho-raelevant logic?., 0f course, while formulating oR axiomaticattly,
with [ Modus ponensl, one can take (s) in place of (w), as well.

On the other hand, pL plug (W) — or plug (s, if one prefers - has
been less popular among students of relevant logics, although it is,
in a sense, b@tigr than R, since it lacks the proof-theoretically
annoying distributivity principles (typical for R or Chidgey's U):

f£dal A & (BS&C - (A&B & (A &C), or
ta-l A & (B@® C ~» (A &B) & C.

The latter "laogic” axiomatizes (emactly? R minus 4™, at least

if one works with the Anderson—-Belnap most preferred R-axiomatics.
This fragment of R has got some support recently, in computer science
studies, and has been examined, monographically, under the label LR, -
in Thistlewaite w2f& al. 871 ("LR® stands there, we are told, for
lattice-R, where "lattice” is motivated semantically: LR admits of
Dunn-style semantics — see Dunn [66]1- with morr-distributive lattices?.

[71 £71
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A good name for it, respecting, moreover, the previous convention
about """ and "p’, is pR, or proto-relevant logic. Proof-theoretically,
we might want to call it "bi-linear lagic” (it would be too long to
explain here why).

€4 Linear quantifiers. At this point, it is advisable to have a
guick look {(and once forever’> to the proper first-order part of
L14Q and L!5Q.

The quantifiers of a "linear" logic are, of course, linear. For
instance, the Anderson & Belnap [8%] “confinement'-principles:

dy ¥Yu, (A & B> » A & %¥u.B, where u is not free in A,
a3 A& Zu.B » 3u. (A & B), where u is not free in A,

are nor-linear assumptions on proof-behaviors. [Although there is

much more to say, the proper comparison is with (d) above.]l VWe may
also note that the "linear” quantifiers look, in fact, like those

of pRQ (the first order pR, which has been also said to be proof-

theoretically - and somewhat mysteriously — "bi-linear®).

In passing, my choice for the ¥-postulates above has its reasons
in a combinatory analysis of the corresponding "linear” proofs.
However, even without going too deep into proof-theoretic details,
one can see that half of my list hides an induction

The [Atomic generalizationl &%) looks very much like the [Ground
generalizationl rule (1i¥). Its meaning is different: the postulates
(i¥) and (k¥> make up the basis case of an inductive definition of
generalization, with inductive clauses accounted for as (s_.%), (8%
(L+- and &-Generalizationl) and (&%),

One could have had a more redundant view on generating inductively
the appropriate generalization rule; the following schemes can be
derived, even in pLQ:

(b—a¥) A~ B - Yu. A » ¥u.B, u not free in A, B,
(¥ ¥u. (A » B) » A —+ ¥u.B, u not free in A,

(b A& ¥u.B —» .%¥u. (A &.B>, u not free in A,

(Ca¥) ¥Yu. A & B » .¥u. (A & B, u not free in B,

and, for some other reason, so is

By ¥u. (¥v.Afvi » Aful, (avoiding uw/v clashes).

This gives, already in piQ, a full generalization rle: for all
Fterms t,

(e Afui=t3I ==> %u.Aful, where u is not free for t in A.

Obviously, taking (T.¥? and (¥) primitive should suffice for pLQ,
Li4Q, etc., as introduced above.

£al L8l
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This being said, it is hardly necessary to bring the quantifiers!’
behavior under focus any more. They will be largely ignored in the
rest of the paper. There is a good reason for this: their addition
is conservative over the propositional fragments (we don't get
more pure »—theorems, say, in L!14Q than we had already in L!4 {(and
analogously for the L!5—-case).

Mote. This is, probably, not immediately obvious at this level of
the discussion. Of course, I can see it because the combinatory
machinery behind the axiomatics provides the result automatically.
This should be the easy way of showing conservativity. Unfortunately,
the details must be deferred. A useful exercise consists of trying
to get the same result in the hard way, by models {(for L{5Q, Girard
{871 is nwt useful although Urqubart [ 861 might Tbe).

85 "Modalities"”: the interplay between L!4, Lewis’ S4 and Heyting's
logic. The addition of the exponerntials 0 and ¢ to pL opens the
doors to quite different a paradise: technically, we add S4-like
axioms to pL in order to obtain L!4, but this is only e half

of the game. So, L!4 is & kinrnd of “modal” logic®, with a proto-
linear basis in place of a classical one.

In order to locate conceptually the other Malf of the game one
must first note that pl lacks sxactly Weakening® ang Contraction®
in order to bg (equivalent to) Classical Logic. Axiomatically,

the missing items are the intuitionistic® axioms (k) and (=).

Now we re-introduce them in somewhat restricted, “exponentiated”
form, here (kca3) and (sca? resp.

It is easy to see that the S4-characteristic part allows also
proving, with some assistance from BCI, fully "exponentiated” (X
and (s8), namely

(Ecaea? [O00-Simplificationl] A3 B = A,

(Scaca?) [[O0-Self-distributionl A= (B =20C 3.4 3B 3 (A =0,
In fact, any "exponentiation” of

(Sraa? [Do-BSelf-distribution] A-» (B~=+C) =+ (A~ B =+ (A =3O,
(Wr3o?) [ Oo—Contractionl A -» (A »B)-» A =B

is equally available as a Li4-theorem (the "exponentiation" consists,
practically, of replacing one or more =’'s by ). In particular, so is

(wga? [[O-Contractionl A=+ (A =3B -» A = B,

One shows quite easily (by using appropriate matrices, for instance?
that L!{4 is also "modally interesting’ (that is, the "modal” axioms
(Kra) and (s&ca?) do not collapse -+ into 3, such that A - B and A 3 B
remain, in general, linearly non-equivalent in Lt4).

Thus, in the end, the "modal” game looks worthwhile playing.

i el (el
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It is equally easy to show that (b)), () and (i) are alsoc Li4-
provable in every possible "exponentiated” form, whereas, obviously,
% satisfies [ Modus ponensl., So Li4 contains at least Johansson
Minimal Implication in the form of =.

At this point it will be useful to notice that, in the above
axiomatization of L!4, (Sca? and (wWca) are interchangeable. In
fact, one can write down the Meredith-pronf (Meredith—combinator
derivation) of {sc3) using only BCI, 1. e.

Sca = b{(b(bwcs2c) (bb?

or with, « ¢ § := baf, ignoring "type-parametrizations”,
Sca = (bwca ° ©) ° bb,

while the ecasiest way tao get (wes3? is with (kesy) and (i) or (o),
Wea = SeaSea{keal) = ScaSea(ckea),

As an aside, (Ec3? is superfluous: one can derive (wea) from {(sc3?
using only BCI.

A little more reflection shows (Girard [871> that =, A, v and 7
are, indeed, the Heyting ("intuitionistic”) connectives, so
intuitionistic propositional logic H is contained (properly> in L!'4,

Girard's translation, In fact, we may think of [Df=31, [Dfal, [Dfvl
and [DEfVl as defining a translation of H into LY4, and analogously
for the first—order case. This is actually the &irard transiation
(Girard [871); 1 shall denote it here by (...)-. Re-using =,
Vigy, and ha, this time as official Heyting connectives in H, (.,.)%
can be defined inductively by:

CA>Y- = A, if A is an atom of H,
(A 3, BX- = (C(AYL-2E3 » (B)w- = (A =3 (B)-,

(A 74q B)- = (A)- & (B = (AY- A~ (B)'“-,

(A vy B = ((AXW)E3 @ ((BX-)FE3 = (A)- v (B):-,

(A - = ({A)-)E3 ~» F = (AY- = £,

Mote, Certainly, in the case of quantifiers, we must have the same
kind of "commuting” behavior for (. ..>%: ¥uu. Ad- = ¥u. (A2~, but
recall that I have already decided to ignore them.

Clearly, the clause for ™, amounts to (A =y £)-, so £ is the "linear"
representation, in L!4, of Heyting's absuroium.

Gdchel ftranslations., As Girard notes incidentally, (...X% is vaguely
reminiscent of the modal translation of H into 84 (see Gddel [331).
The differences are, however, radical. In order to see this, we may
ignore again the quantifiers and pay attention exclusively to the
corresponding propogitional logic-fragments.

£101 {101
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First, there are geveral distinct ways of making a "provability-
preserving Gddel translation” H —2» 84 (cf. McKinsey & Tarski [481,
Troelstra [86]1 or details following below.

Next, while doing (...)" one has a significant technical departure
from any translation of the Gédel-type. Let's look into the
rudiments.

Let (. ..)® gtand for the original Godel [33] translation.
Vriting =, A&, ¥, 7, resp. for the official classical connectives,
with 7, defined inferentially in terms of a classical falsum
constant F and [0, - for the specific S4-connectives, with, say,
O primitive, & la Gbdel-Lemmon and -} given, as usual, by

A -2 B := OA - B,

the &ddel translation (..)° reads, inductively,

(Are = A, if A is an atom of H, with, in particular,
(£ ©® = F,

(A = BY® = QWS o [(BYS,

(A ~y B2® = (A= 4 (B)S,

4 v B)® = OAO=® ¥ OWEs,

i) = S o F = “(OWe),

Another Gddel translation, (. ..>"® say, (for modified Gécel, cf.
also Giddel [331), can be defined by changing the clauses for ~un
and s above into

(A ryy BOPS = [I(AIMS A [I(BIMS,
(ThaAD ™S = [{{CAY™e o By = OOV Qasme))y = OQuome 4 F,

Note that (. ..>™® ig very much like the MeKirnseyv-Tarski trarnslation,
of McKinsey & Tarski [48]: denoting the latter by (. ..>"" aone has,

(ArmT = [JA, if A is an atom of H, with, in particular,

CEp) ™Y = [OF,

(A 3y BOMT = OAMY o OB,

(A Ay BOMT = OCAPMT 4 O(BI™T,

(A wiq BY™7 = OQWOMT ¥ OEIWT,

Tl )T = OQCAO™T o By = OV AK™™) = (Ay™T 3 F,
The translations (...?® and ( ..)>™% are such that, for any H-formula
A, one can prave

S4 - Oaass (A>)mT,

S4 F AXmT o QlAYs,

So, in both cases one has, with McKinsey & Tarski [481, for any
H-formula A,

G HE A <(==> 84 I (A)S (== 854+ AXwmT,
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In particular, for any H-formula of the form C := A =, B, one has
HEFEC <==> 84 F OW*=® 3 O3 == S4 F O™ o gaEm ,

which gives,

(1G) H - C <==> 84  OKA)= o (BX® (==> $S4 + Q™" o (BT,
since

54 + 0A D B <== S4 - A o B.

Actually, both (...>% and (. ..)™" are S4-neuitral: the use of S4
is non-specific. Indeed, one can replace 84 in (G), by 93 (see
Hacking [631) or by SAGrz, where 8S4Grz extends S84 (properly? by
(grz) [Grzegorczykl A -1 DA 2 A DA,
say, (cf. Grzegorczyk [671 or Segeberg [711). In the latter case,
it is interesting to note that (grz) is not a theorem of Lewis’
85 (see, . g., Boolos [791).
In view of (1G> above, one may try to define Gddel-like translations
H-—-> 84, ¢(..>2, (..)™ gay, matching (. ..)%, (..)"™", resp., but

"strengthening” the corresponding clauses for . in the direction
suggested by (1G). That is:

(A= = A, if A is an atom of H, with, in particular,
(0@ = F,

(A = B)= = [CA)® o (B9,

(A ~y B)® = (A9 A (BY)9,

(A vy Bo= = QA= ¥ O(B)=,

(Thad)® = Oda)e o F = 7(0OWA)s

and analogously for the McKinsey-Tarski variant,

(A)m™t = [JA, if A is an atom of H, with, in particular,
(Ep) ™™ = [,

(A 3 BY™t = [JCAY™Y o5 (B)™%,

(A Ay BYer = [OQCAY™Y A [I(B)™Y,

(A vy BYm™®= = TI(A)™Y ¥ [O(BI™=*,

haA) = QCAY™E o F)Y = [(TA)=r) = (A)=* 3 F.

It is likely that the modified translations do still work such as
to preserve the corresponding analogue of (G)

(g’ Hi- A <==> 54 b (A)S (== 84 - (A)mx,
for any H-formula A.
Still, in any one of the cases considered above, S4 does not seem

to explain, conceptually, anything; it blurs the picture rather
than attempting to clarify it.
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Consistency of LY'4Q. Technically, L!'4Q is sérictly containsd in
first-order S4. That is: L!4Q can be interpretsd in S4Q.

Formulating Lewis’ S4(Q) & la Gbdel-Lemmon, with two additional
clasgical constants verum T and falswum F, say, one has to map
atoms into atoms, translating -+, &, [0 (of course), ¥ (linear) by
3, A, 0 (necessarily.), ¥ (classical) resp.

Note., 1t is not very important how L!4Q-constants are to be handled.
The obvious suggestion is to map T to T and L to ¥, such as to
preserve the translation of negation. Note that, by this kind of
translation, = does not go into the - of S4; in fact, A 2 .B =2 A

is not an S4-theorem; A 3 B would rather become A = B.

Then plL, the S4-characteristic—axioms (Kr3), (irs3), €(4rc5) and the
exponentiation rule (I’ are trivially S4-valid. To show that (kcs)
and (wrc3? go also into S4-theorems, by such an interpretation,

one must realize that

(ki S4 + Ao OB o A,
(wiDh S4 - Ao (Ao B o .0A 2 B,

But, 54 contains classical logic and (k{I) is a substitution in a
tautology. On the other hand,

CwiliD S54 F0A o (A =B - .0A = B,
is such a substitution, too, and Wi yiels already (w), from
S4 F (JA - B> 3C>= .(A 2B = C

(the latter comes by applying Suffixing twice to the S4-axiom
OA = A,

Mzte. The quantifiers are, again, unproblematic, provided we choose
the right kirmd of oguantifisd S4.

So L14Q is ponsistent, at least in the same sense first—order S4
is known to be.

The "modal” odé¢towr shows that both Weakening and Contraction have
been banished only provigsionally from linear logic. However, the
axiomatic formulation is not the best heuristic tool in this respect,
it serves to "package” the knowledge, rather than to reveal it, it
fiivles the fact that something #ls® happened while re-formulating
HQ in "linear” terms.

The equivalent matural deduction (or type-theoretic) variant of
L!{4Q makes clear the fact that the representation of HMQ) in LIAWQ
sketched above (after Girard) is an analysis of relatively complex
operations into elementary atomic wnits, Moreover, the "linear”
decomposition has a good operational, "denotaticonal’ (viz., domain-
theoretic) and, in the end, Jynamic reading.
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§6 L!'S is not Lewis’® S5. Note that (B¢a) is, indeed, [ Lewissl, i.
e.,, under the obvious translation, Lewis' characteristic axiom for
S85. That is: Af3<> o Ar3, This yields automatically consistency
for L!5, since (Bcx) translates into ¢0A = A, along the modal
interpretation discussed above.

Ve may hope that LS is also "modally interesting”, 1. e., (Scad
does not collapse the & of L!5 into classical or "material®
implication. This caution is motivated by the fact that, unlike
for Li4,

LS - A » B » A,

whence the pure implicatiornal fragment of LS is at least BCK
(the reader could try: "it is exactly BCK”, as an exercise).

Sa, i¥ Contraction, in the form of (w) or (s, would be also
available for -, in "un—exponentiated” variant, L!5 wowld also
contain the Heyting pure implicational H-., whence also the full
theory of classical ("material”) implication o, with, Feirce’s
Law ("un-exponentiated”) holding for -+, too. Ultimately, LI5S
woutlel also contain full classical logic, in view of (4) and one
cowlid be confronted with the unpleasant "equation” LI5S = 85,

Certainly, if such a disaster cowld ever happen the "modal” game
is not worthwhile playing, in Version Number 5. [ Incidentally,
however, R!S = 85.]1 The fact that this can ot be the case is
shown by the following matrices adapted from Lukagiewicz’ three-—
valued logic, I will re—name the iLukasiewicz "values" tt, uu, If.

The matrix for 1 (i) is £ff, (so 1 is somehow fFfalse in this world);
those for linear implication -+ and universal exponentiation [I are
as follows:

-+ 5 &t | uu E ££ i ottt ouwu ¢ £f
£ttt ! owa | fF | Dot otk lo£r i £f
wa i bk b6 T
£f 1 B 0 tE 1 tE
From the above, one derives the behavior of —, {, 0 and B. One has:
OV tt ! wan it £f | HEEE 2 S 1 B & S
s S £ 0 omu i b
wa | tE | 6w | S
££ 1 to | wa i f£f |
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i) i tt E uu i £t s E tt E ua E ff 3
t6 ! bt own i off | o b § v £ !
wa i owa i ££ | £f | T
££ 1 ££ 1 ££ 1 £ |

i
1
i
(]

There are many choices for & and ® and the matter is, in a sense,
irrelevant for immediate purposes. For the sake of completeness
consider also

& i tt E wu 1+ ££f & ! tt | uwa ! £ff 3
€6 | bt L own i £ | ke
wa ! we i owu i off R e
££ 0 £f 1 ££ 1 £f | ££ 0 b6 1 owu i £ |

H
2
ad
2}

Mote. So, the "non-mondal” part works for pR [= LR or R minus (w1l
too, since the matrices above agree, in fact, after renaming, with
Matrix Set XXIV of John Chidgey in Anderson & Belnap {751 829.9.

Given the finite alygsbra above, it generates ithrse-valusd trutir-
tabrles by "designating” tt as Truth. The main observation consists
of saying that (w) is "not verified”, for -», by the "valuation”

A = uu, B = ff, [this must give uwu as "value” for (wl, while (wca>
ig "verified” for the given interpretation of -+ and . The reader
will check easily that the remaining axioms and rules of L!% "hold"
for the above "interpretation", as well.

Mote, Of course, by conservativity, we cannot collapse L!15Q into
Csome  form of) gquantified 85, either.

§7 Catastrophic modal neighbors. Diodorus Cronos and Louis F. Goble
are reputed to have asked the question "Vhat would happen if the
sun suddenly stopped?” (for Goble, see Anderson & Belnap [75]

or even Goble [711). The answer given in Goble [71]1 has been
anticipated by many modal thinkers, among whom Robert K. Meyer

(cf. Meyer (66,68]) and (following Anderson & Belnap) T. C. Mits!

Goble's main answer is of type 4, at best, and bhe builds up "modally”
on R. Actually we could have imagined puossibly weaker (logical)
attitudes, as, e. g., building up on pR, the proto-relevant lagic.

Add, for instance, the following mix-up to this axiomatic proto-
world:

[gﬂble] (K::), (i::), (4[3), (E]), (k::).
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Certainly, (sc3?> is not worthwhile looking at: it is already in
oR, and so in pR and its extensions. The team called [gablel above
is, practically, innocent: it worked with pL, so why not with pR?

The result has been called R!4, at the very beginning. This "logic”,
relevant as well, will be, certainly, taken into derision by Girard
ton reasons mentioned, e. g., by Nathan Leithes in La ré&gle du jeu
& Paris, Mouton & Co: The Hague and Paris, MCHMLXVI1, but seems to
have good life—chances, at least philosophically and even proof-
theoretically, since (apparently) it does not contain the bad kind
of distributivity (that is: (d) or (@), already mentioned; this is
another way of saying that it does ot contain R or that it is ot
the same thing as Goble’'s logic of type 4.

Of course, the would-be R!S is the same as Lewis' 895, as argued
above and as shown by Goble, long befare [711.

This completes a raw approximation of the modal story. In a sense,
Number 5 is the Ultimate Limit, since "exponentiating” on pL, &
Ia Sk, with 5 < k £ 9 is (following Goble, again) even beyond
everything that "only God knows”!

88 Vhy !5 (i. e., yet another "linear” logic)? As mentioned earlier,
Girard's translation of Heyting's logic HQ into Li14Q is, in fact, a
way of analyxirng HQ into linear operations.

Given Godel's dowble negation Interpretation (YN of classical
logic into first-order Heyting, (roughly speaking, this sends
classical atoms p into double intuitionistic negations Tip, and

makes the resulting extension "commute”, as a map, with the
connectives?), one may try to transfer Girard's translation to the
classical case, by composing (...>-, defined previously, with (...)™™,

Ignoring quantifiers again, the reader will check easily that the
result leads, in substance, to the following awkward "representation”
of the classical connectives into L!4 (now =3, A, ¥ and ~ are defined
as linear L!4-"connectives"):

[Df=] A =S B := A<»£3 » BE3I<>
[DfAl A A B = (A<>C3 [ Bra<>c3i)y<>
[DEY] A Y B = A€3I<> [ BEI<>

[DE™] ~A = A<> = (A + L)Y<>,

This loocks rather obscure gua "linear analysis of classical logic”.
Of course, the correct way of expressing the meaning of the above
is to define inductively (on the structure of classical formulas?

a translation, (.. : C —> L!'4, say, (cf. Girard [871), by:

(A= = (A)F3I=<>, if A is an atom of C,
(A o BY=- = ((AYSL-)E3 » (B)S- =  (AYe- =z (B)<-,

(A & Byel- = (((A)S)E3 [ ((B)S)E3)y<> =  ((A)S- & (B)St-)Ee3<»,
(A ¥ Bev- = (Are- [ (By<-,

(YA = ((A)E-)—<> =  {({(A)YS- =+ }1)=>,
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The above shows, at best, that classical logic C is a strange mixture
of disparate ideas, but, ultimately, is not very entertaining, either.

The alternative consists of replacing Girard’s translation (...0%-
by a mapping € —> L!5 (gic). For convenience, the change of domain
and range will be reflected in notation by having an "L” swub-scripted
in place of a super-scripted one. Thus: (...,

If taken as definitions in L!S, [Df=1, [Df~Al and [Df™1 give the
corresponding (. ..%. : €C —> L!5. Indeed, re-using =S¢, “~c and T,
this time for the official classicral connectives o, A, ~, resp.,
one has, inductively again:

CAd o = A, if A is an atom of C,
(A 3c B, = (CAYLYE3 = (B), = (A 3 (BYo,

(A e B = A0 & (B = (A A (B,

A = (CAY )53 —» 1 = (A, = L.

[ The extension to the first-order case must be "commuting”, too,
in the obvious way.l

Mate., For classical disjunction we bhave several alternatives.
However, applying & la lettre Girard's suggestion for H:

A ve Bl = (CAYLOE2 @ ((BX)E3 = (Ad_ v (B,
to the classical case does not yield a proof-theoretically well-

behaved disjunction as intendsd 1in a classical setting. We could
have defined, instead, in LI!5Q):

[Dfv] A v B = (AT & B™)™ Aglobal dckhaml or, external or,
{Dful A uB = A 0 OB Cglobal fission, Intsrnal or),
{Df+] A+ B = (A 3 B =% BY (global inferential or),

whence the internded classical or must be the aone given by [Dfwl.

The reader will eventually check that, for all H-formulas A and
all C-formulas B,

HE A ==> L4 | (AOv and C B ==> Li5 I (B),,

and similarly for the first-order analogues. So, if L14Q) is a
correct way of explaining Heyting's logic, one may hope that Li5®WQ)
is an equally good medium of linearization®e for classical logic,

Draft: Paris, June 1987.

Revised: Nijmegen, July 1987, 11 August, 7 September 1088.
Last revised: Nijmegen, 28 August 1©90.
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Hotes.

* Acknowledgment. I am indebted to Jean-Yves Girard for providing
reasorns to write this up. The axiomatics for linear logic
arose first as a theory of lingar combinators, after one of
his talks. LS<Q) L= Ockham logic, cf. Summa logicas, Fars
Secunds et Tertiasg Frima, ed. Ph. Boehnerl is arthogeonal +to
the observation that "la logigue lingaire, c¢’a@st - guarnd-mémg -
vty logigee de Girard'. William Ockham has been oft credited
with S5@), but I think that even L!5Q is - after all - a
logric wf Ockham.

' This is not 1immediately obvious, since Girard's original
syntactic decisions are rather wrmheimlich to the unwarned
reader. Frovability is introduced in Girard [87]1 by an
artifice claimed to be a "Gentzen sequent calculus”; the
latter is quite unusual, and might be rather called "sequent
axiomaticg”, provided "sequents” are understood appropriately.
The syntax appearing here oiverges from that of Girard in
several respects. This has been mainly indended in order to
facilitate comparisons with neighboring or rival 108108
(1°> Unlike here, Girard has also regative atoms p q s v e
as primitives. Next, he introduces "linear negation” by an
inductive re-writing scheme on negation-free formulas; this
means that neither his "negation” nor anything else defined
in terms of it (e, g., even linear entailment) are really
"logical connectives” in the ordinary sense.

(2°) Girard takes the four "propaositional constants” T, L, t
and £ and [, B, &, @, as primitive.

(3°) Also, my terminology diverges from Girard's in that I use
“linear fusion”, "linear fission"” in place of "linear and”,
“linear or”; this way of speaking is derived from work on
relevant logics (Alan R. Anderson, Nuel Belnap, Robert K., Heyer
2t al.) and has a perfect motivation: the addition of Contraction
to the fragment called "proto-linear” here, gives a "prato-
relevant logic”, with connectives "fusion” and "fission” defined
as above (this is, in fact, exactly LR, or "non-distributive

R’ of Thistlewaite &t al. [871, mentioned later).

(4°) Finally, the remaining disagreements are iyvpograpmhical:
Girard's par, (denoting my “linear fission” and) printed as a
reversed ampersand %, is replaced here by what a computer
scientist has always called "par” and printed as [ (in

slightly different a context, indeed, following Dijkstra

@t atiid>, If functioning as "negation”, Girard's superscripted
Y"orthogonality” i, is — more comfortably — printed here as a
superscripted bar, and his "linear entailment”, -o has now
become an arrow . And, since I said that Girard's ! and 7?

are "modalities”, without denying the fact that they are also
"exponentials”, I will print them as swuper-scripted O and &,
reserving {(mainly) ! for a better usage, in a larger context.

#® Due to so many differences, the most hygienic strategy
to show that Li14(Q) and Girard’'s "linear” lagic are the sams
thing, would probably consist of showing that Li4(Q} is {(sound
and> complets for Urqubart's monoidal semantics, as extended
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{191

by Girard [87], and called, for some reason, phase semantics”,
there. An easier, although slightly abusive, strategy, (given
the presence of "negative” atoms) consists of realizing first
that his "right-handed-gentzenization” is, in fact, a disguised
axiom system. By the same token, one should note, as well,

that his "CUT” covers both [ Moodus pornens]l and the Transitivity
of linear entailment, i. e. the rule

(trans? A ~» B, B+ C ==> A » C,

The reciprocal derivability of theorems becomes then trivial.
The interested reader can recover an alternative proof of
equivalence, by inspecting Avron [ %871 {(which came to my
attention after completing a first draft of this paper;
Avron’'s axiomatics — for L!4 only - are based on different
insights and are less useful for a proper combinatory
analvsis of LI4QY,

But my 4" in L14(Q) is rather reminiscent of Lewis' S84 and
has nothing to do with Smiley's "4”, which is part of a
local, asf hwe nomenclature (e. g., Smiley’s L, is the

pure implicational part of Hilbert's “positive logic).

The same idea has been exploited by Urgubart in various
directions by specializing the underlying monocids: the
semi-lattice option leads to models for relevant logics,
while more “algebraic” specializations lead to models for
BCK-extensions, and, in general, for BCK-based logics

wi thouwt contraction. For instance, taking ordersd abelian
groups as a starting point, one obtains models for
tukasiewicz’ many-valued system L, this approach has been
proposed earlier (1970), by Dana Scott (see Urquhart [&861
for details).

Girard's distinction between "multiplicative” and "additive"
is visible and convincing only in Gentzen-style Ssguenz-—
formulations and refers to the way of composing "contexts”
in the conclusion of a derivation rule in different variants
of such formulations. Since Gentzen Seguenz-systems are here
only of a remote interest, I will not use this way of
speaking any further. See Girard's lecture notes {%871 for
an elementary explanation.

Girard has denied this {(in print and otherwise), but his
reasons were not among the best possible ones.

So it is "relevant"”, whatever means this philosophically.
Proof- (ar better type—-) theoretically, this claim amounts
to the fact that '"cancelling” typed combinators (= closed
typed A-terms) are i admitted as objects.

This mskes it "linear”, in & rather precise sense.

Or rather minimal, in the sense of Johansson,

[ Added in proof: August 19881. The hope is Jjustirfisd and
leads eventually to a local proof-theory for classical logic,
The details will appear elsewhere [Rezus ©X1.
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